【leetcode】Longest Palindromic Substring

本文详细介绍了寻找最长回文子串的三种高效算法,包括动态规划、中心扩展和Manacher算法,并提供了对应的代码实现。通过对比不同算法的时间复杂度和空间复杂度,旨在为读者提供解决此类问题的实用方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

From : https://leetcode.com/problems/longest-palindromic-substring/

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.

Solution 1 : 

动态规划。 isPalin 表示i到j之间是否是回文,时间O(n^2), 空间O(n^2)。

class Solution {
public:
    string longestPalindrome(string s) {
        if(s == "") return "";
        int len=s.size(), start=0, end=0;
        bool isPalin[len][len];

        // init
        for(int i=0; i<len; i++) {
            for(int j=0; j<=i; j++) {
                isPalin[i][j] = true;
            }
            for(int j=i+1; j<len; j++) {
                isPalin[i][j] = false;
            }
        }
        
        // core
        for(int j=1; j<len; j++) {
            for(int i=0; i<j; i++) {
                if(s[i] == s[j]) {
                    isPalin[i][j] = isPalin[i+1][j-1];
                    if(isPalin[i][j] && j-i > end-start) {
                        start = i;
                        end = j;
                    }
                }
            }
        }
        
        return s.substr(start, end-start+1);
    }
};


Solution 2:

回文有中心,遍历这些中心。时间O(n^2),空间O(1)。

class Solution {
public:
    void expendFromCenter(string &str, int i) {
        int st, ed;
        ed = (i>>1)+1;
        st = ed - 1 - (!(i&1));
        while(st >= 0 && ed < length && str[st] == str[ed]) {
            st--; ed++;
        }
		st++; ed--;
        if(ed - st > end - start) {
            start = st;
            end = ed;
        }
    }
    string longestPalindrome(string s) {
        if((length = s.size()) <= 1) return s;
		start = end = 0;
        for(int i=0, n=2*length-1; i<n; i++) {
            expendFromCenter(s, i);
        }
        return s.substr(start, end-start+1);
    }
private:
    int start, end, length;
};


剪枝处理,求取可扩展的半径r,只对可能的情况做处理,半径超出字符串界或者半径边界本身不相等,那么不可能成为更长的回文,剪枝。

class Solution {
public:
    int find(string& s, int c, int& st, int& ed, int& len) {
        int i, j;
        if(c&1) {
            i = c>>1;
            j = i+1;
        } else {
            i = (c>>1)-1;
            j = i+2;
        }
        int r = (ed-st-j+i+1)>>1;
        if(i-r < 0 || j+r >= len || s[i-r] != s[j+r]) {
            return r;
        }
        while(i>=0 && j<len && s[i] == s[j]) {
            if(j-i > ed-st) {
                st = i;
                ed = j;
            }
            --i;
            ++j;
        }
        return r;
    }
    string longestPalindrome(string s) {
        if(s.size() <= 1) return s;
        int start = 0, end = 0, len = s.size();
        int centers = len+len-1;
        for(int i=1, r=0; i<centers-r; ++i) {
            r = find(s, i, start, end, len);
        }
        return s.substr(start, end-start+1);
    }
};


Solution 3:

Manacher’s Algorithm算法,详见

http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 

http://www.felix021.com/blog/read.php?2040

根据回文的对称性,选出最大回文。


class Solution {
public:
	// Transform S into T.
	// For example, S = "abba", T = "^#a#b#b#a#$".
	// ^ and $ signs are sentinels appended to each end to avoid bounds checking
	string preProcess(string &s) {
		int n = s.length();
		if (n == 0) return "^$";
		string ret = "^";
		for (int i = 0; i < n; i++)
			ret += "#" + s.substr(i, 1);
 
		ret += "#$";
		return ret;
	}
 
	string longestPalindrome(string s) {
		string T = preProcess(s);
		int n = T.length();
		int *P = new int[n];
		int C = 0, R = 0;
		for (int i = 1; i < n-1; i++) {
			int i_mirror = 2*C-i; // equals to i' = C - (i-C)    
			P[i] = (R > i) ? min(R-i, P[i_mirror]) : 0;    
			// Attempt to expand palindrome centered at i
			while (T[i + 1 + P[i]] == T[i - 1 - P[i]])
				P[i]++;
 
			// If palindrome centered at i expand past R,
			// adjust center based on expanded palindrome.
			if (i + P[i] > R) {
				C = i;
				R = i + P[i];
			}
		}
 
		// Find the maximum element in P.
		int maxLen = 0;
		int centerIndex = 0;
		for (int i = 1; i < n-1; i++) {
			if (P[i] > maxLen) {
				maxLen = P[i];
				centerIndex = i;
			}
		}
		delete[] P;
  
		return s.substr((centerIndex - 1 - maxLen)/2, maxLen);
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值