背包专项总结(2nd)

T 1 : P 6065 \tt T1:P6065 T1P6065

将每个 2 2 2 的幂视为物品的重量 w i w_i wi,容量为 n n n,物品的个数需要统计幂的数量 p o s pos pos,然后是完全背包求方案数。
注意:因为要求取模,推荐一个公式 ( a + b ) m o d    c (a+b)\mod c (a+b)modc 相当于 ( ( a m o d    c ) + ( b m o d    c ) ) m o d    c ((a\mod c)+(b\mod c))\mod c ((amodc)+(bmodc))modc
代码:

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=1e9;
int n,dp[1000005],w[105],cnt=1,pos;
signed main()
{
	cin>>n;
	dp[0]=1;
	w[0]=cnt;
	while(cnt<=n)
	{
		cnt*=2;
		w[++pos]=cnt;
	}
	for(int i=0;i<pos;i++)
	{
		for(int j=w[i];j<=n;j++)
		{
			dp[j]=(dp[j]%mod+dp[j-w[i]]%mod)%mod;
		}
	}
	cout<<dp[n]%mod;
	return 0;
}

T 2 : P 1466 \tt T2:P1466 T2P1466

先判断累加的奇偶性,如果是奇数直接结束程序

而是偶数的数,对于只选前 i i i 项的数,它们的和正好是 j j j 的方案总数。
答案:第 i i i 个数选不选,所以由此得出方案总数就应该是选的方案和不选的方案之和。
注意等差数列求和公式:
( a + b ) ⋅ n 2 \frac{(a+b)\cdot n}{2} 2(a+b)n
代码:

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,dp[2000],w[45];
signed main()
{
	cin>>n;
	dp[0]=1;
	if(n*(n+1)/2%2==1)
	{
		cout<<0;
		return 0;
	}
	for(int i=1;i<=n;i++)
	{
		w[i]=i;
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=n*(n+1)/2;j>=w[i];j--)
		{
			dp[j]+=dp[j-w[i]];
		}
	}
	cout<<dp[n*(n+1)/4]/2;
	return 0;
}

T 3 : P 2392 \tt T3:P2392 T3P2392

首先,我没需要证明一点: 4 4 4 个学科独立刷题,是做 4 4 4 遍背包,不要被那个左右大脑误解了。

其次,做一个科目的时间不会超过所有题目时间的总和。
接下来,有几点:

  • 如果要是花费的总时间小,那么左右半脑的处理题目的时间就要尽可能地相似,一个不大于 t 2 \frac{t}{2} 2t,一个不小于 t 2 \frac{t}{2} 2t
  • 我们这里先将用时较短的半脑作为目标,让他尽量多。

最后是对应关系:

  1. 容量:时间
  2. 物品:题目
  3. 重量与价值:每道题目的耗时

代码:

#include<bits/stdc++.h>
using namespace std;
int n;
int help(int n){
	int sum=0,w[25],dp[1205]={0};
	for(int i=1;i<=n;i++)
		cin>>w[i],sum+=w[i];
	for(int  i=1;i<=n;i++)
		for(int j=sum/2;j>=w[i];j--)
			dp[j]=max(dp[j],dp[j-w[i]]+w[i]);
	return sum-dp[sum/2];
}
int main() {
	int s1,s2,s3,s4,ans=0;
	cin>>s1>>s2>>s3>>s4;
	ans=help(s1)+help(s2)+help(s3)+help(s4);
	cout<<ans;
	return 0;
}

T 4 : P 2347 \tt T4:P2347 T4P2347

这题是多重背包模版加找答案,很简单。

但不过注意第二层循环 j j j 一定是从 1000 1000 1000 循环到 0 0 0!!!(我就是因为这个丢了92分)
代码:

#include<iostream>
using namespace std;
int num[7],ans,w[]={0,1,2,3,5,10,20},dp[1005];
int main()
{
	dp[0]=1;
	for(int i=1;i<=6;i++)
	{
		cin>>num[i];
	}
	for(int i=1;i<=6;i++)
	{
		for(int j=1000;j>=0;j--)
		{
			for(int k=0;k<=num[i];k++)
			{
				if(j>=k*w[i])
				{
					dp[j]+=dp[j-w[i]*k];
				}
			}
		}
	}
	for(int i=1;i<=1000;i++)
	{
		if(dp[i]!=0)
		{
			ans++;
		}
	}
	cout<<"Total="<<ans;
	return 0;
}
01背包问题是动态规划中的一个经典问题,它的解法也非常经典,下面是我对该问题的动态规划总结。 1. 状态定义 定义一个二维数组dp[i][j],其中i表示当前考虑到第i个物品,j表示当前背包容量为j,dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。 2. 状态转移方程 对于每个物品,我们可以选择将其放入背包,也可以选择不放入背包,因此状态转移方程如下: 如果不将第i个物品放入背包,则 dp[i][j] = dp[i - 1][j] 即前i-1个物品已经在容量为j的背包中的最大价值就是dp[i - 1][j]。 如果将第i个物品放入背包,则 dp[i][j] = dp[i-1][j-w[i]] + v[i] 即前i-1个物品在容量为j-w[i]的背包中的最大价值加上第i个物品的价值v[i]。 最终的状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 3. 边界条件 当物品数量为0时,dp[0][j]都等于0;当背包容量为0时,dp[i][0]都等于0。 4. 求解最优解 最终的最大价值为dp[n][W],其中n表示物品数量,W表示背包容量。 5. 代码实现 以下是01背包问题的动态规划代码实现,其中w和v分别表示物品的重量和价值,n和W表示物品数量和背包容量: ```python def knapsack(w, v, n, W): dp = [[0] * (W+1) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, W+1): if j < w[i-1]: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]) return dp[n][W] ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值