前沿技术洞察(四):异构GPU池化实现边缘计算高实时强交互体验

实时云渲染在服务端一侧的核心技术点之一,在于如何将云端资源最大化利用。首先需要将云资源创建为满足要求的独立运行环境,虚拟化技术可以实现这一目标。通过软件模拟和硬件耦合,提供虚拟化的容器计算空间,用于资源与应用的隔离和分配。

为了保障云端GPU算力的可用性,可将云端资源虚拟化,静态切片方式分配算力资源,给XR应用预留启动算力。当客户端请求发出后,第一时间调度云端资源计算渲染,在流推至客户端。通常包括GPU虚拟化、图形API虚拟化、操作系统OS虚拟化和进程虚拟化,其中GPU虚拟化方式分三种:直通模式将物理 GPU 直接分配给虚拟机,性能无损且无需改驱动,被公有云广泛使用;GPU 分片虚拟化从时间片段和显存划分两个角度进行,虽有性能损失但灵活性大且支持热迁移;GPU SRIOV 虚拟化将 PCI 资源拆分,灵活性低且由硬件决定拆分数量。此外,还有图形 API 虚拟化在图形 API 层实现,操作系统虚拟化如 KVM、VMware 等技术,以及多进程虚拟化在单一操作系统内通过进程级隔离提升资源利用率。

实时云渲染因计算密集而需多种异构计算资源。异构算力池化技术解决资源利用问题。它把 CPU、GPU、NPU、DPU、FPGA 等不同类型计算资源汇聚成统一资源池,按照任务的具体要求,在云端进行动态分配与调度。这样一来,既提高了资源利用效率、避免资源闲置浪费,又能够根据不同任务的复杂程度和特性灵活调配资源,最终达到优化资源使用、提升实时云渲染整体性能的目的。

不同于传统虚拟化技术,由Paraverse平行云自研的第三代GPU池化技术,正是异构算力池化技术的生动体现。

异构算力池化技术能够发挥不同资源的最佳优势,实现资源的灵活配置。由于不同渲染任务对计算资源的需求不同,异构算力池化可以根据具体需求选择最适合的资源进行处理。例如,一些任务适合使用 CPU 进行通用计算,而另一些则更适合使用 GPU 进行并行处理或 FPGA 进行特定计算。通过整合这些异构资源,技术能有效提高渲染效率和资源利用率。

LarkXR的底层架构提供了gpu资源池化管理能力,可以通过拦截图形处理接口,对gpu的使用进行动态分配,并对上层应用进行进程级的隔离,给应用提供一个容器化的环境进行独立的运行。从而做到在高密度的gpu上,支持一机多卡,一卡多应用的共享模式,实现对gpu资源的超细粒度分配,结合AI算法的智能调度,提高了资源利用率,可以完美支持短时高并发超大规模的渲染服务调度,自2022年起与淘宝、天猫、阿里妈妈、网易、火山引擎、首都在线等联合打造不低于10场XR元宇宙2C业态场景,树立行业标杆。

Paraverse平行云作为全球领先的数字平行世界云渲染服务商,也是国内第一家将实时云渲染技术产品化、商业化和行业的高新技术企业,在虚拟仿真、数字孪生、数字人、虚拟直播、元宇宙云活动以及展览展示等XR细分领域树立了众多标杆案例。其自研的LarkXR云渲染平台,是国内最先完成平台级业务集成的CloudXR产品,具有高可用高弹性、高兼容高性价比等诸多优势,引领XR规模化上云潮流。Paraverse 平行云的 LarkXR 解决方案确实为实时云渲染技术的推广和应用树立了新的标杆,为整个行业的发展注入了强大动力,引领着实时云渲染技术朝着更广阔的未来迈进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值