Naive

现在有一个 nm 的棋盘,小哈试图用一些 12 的卡片来铺满这个棋盘,卡片不能重叠,最终也不能有空余的格子在棋盘上。
过了一段时间,他觉得这个问题实在是naive,于是他将棋盘的一些点挖掉,这些点将不能用卡片覆盖。现在他想知道,是否
存在一个方案可以用卡片覆盖剩余的棋盘。

输入

有多组输入数据. 对每组数据:

第一行两个数 n,m

接下来 n 行是一个棋盘 "." 表示未被挖掉的部分, "o" 表示被挖掉的部分

1n,m233,

输出

如果可以覆盖输出yes
否则输出no

样例输入

3 3
...
.o.
...

样例输出

yes


#include <iostream> 
#include <string>
using namespace std; 

#define MAX 234 
int n,m; 
int temp[MAX][MAX];  
int mat[MAX][MAX]; 

void copy(int a[MAX][MAX],int b[MAX][MAX]){ 
	for (int i=0;i<n;i++) 
		for (int j=0;j<m;j++) 
			b[i][j]=a[i][j];   
}

bool dfs(int i,int j,int matrix[MAX][MAX]){    

	if(i==n-1&&j==m-1){
		if (matrix[i][j]==1) 
			return true; 
		return false; 
	}   

	int index=i*m+j,x=i,y=j;  
	if (matrix[i][j]==1)
	{  
		index++; 
		x=index/m; y=index%m;  
		while((x<n&&y<m)&&matrix[x][y]==1){     
			if (x==n-1&&y==m-1) return true; 
			index++;  
			x=index/m; y=index%m;  
		}
	} 

	if (x==n-1&&y==m-1&&matrix[x][y]==0) 
		return false;     

	if (y==m-1)     
	{ 
		if (matrix[x+1][y]==1) return false; 
		else{
			copy(matrix,temp); 
			temp[x+1][y]=1;     
			return dfs(x+1,0,temp); 
		}
	}else if(x==n-1){
		if (matrix[x][y+1]==1) return false;  
		else{
			copy(matrix,temp);   
			temp[x][y+1]=1;      
			return dfs(x,y+1,temp);   
		}   
	}else{
		bool a=false,b=false;  
		if (matrix[x][y+1]==1) a=false;  
		else{
			copy(matrix,temp);  
			temp[x][y+1]=1;      
			a=dfs(x,y+1,temp);     
		} 
		 if (a) return true; 
		if (matrix[x+1][y]==1) b=false;  
		else{
			copy(matrix,temp);  
			temp[x+1][y]=1;      
			b=dfs(x,y+1,temp);      
		} 
		 if (b) return true; 
		return false;  
	}
}

int main()
{
	string s;   

	while (cin>>n>>m)
	{  
		int sum=0;  
		for (int i=0;i<n;i++)
		{  
			cin>>s; 
			for (int j=0;j<m;j++)
			{ 
				if (s[j]=='o') mat[i][j]=1; 
				else{
					mat[i][j]=0; 
					sum++; 
				}
			}
		} 
		if (sum%2==1) 
		{ 
			cout<<"no"<<endl;  
			continue; 
		}
		if (dfs(0,0,mat))           
			cout<<"yes"<<endl; 
		else cout<<"no"<<endl; 
	}
	return 0; 
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值