转载链接:http://blog.csdn.net/liufeng_king/article/details/8484284
问题场景:在应用中,常用诸如点、圆等简单的几何对象代表现实世界中的实体。在涉及这些几何对象的问题中,常需要了解其邻域中其他几何对象的信息。例如,在空中交通控制问题中,若将飞机作为空间中移动的一个点来看待,则具有最大碰撞危险的2架飞机,就是这个空间中最接近的一对点。这类问题是计算几何学中研究的基本问题之一。
问题描述:给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。严格地说,最接近点对可能多于1对。为了简单起见,这里只限于找其中的一对。
1、一维最接近点对问题
算法思路:
这个问题很容易理解,似乎也不难解决。我们只要将每一点与其他n-1个点的距离算出,找出达到最小距离的两个点即可。然而,这样做效率太低,需要O(n^2)的计算时间。在问题的计算复杂性中我们可以看到,该问题的计算时间下界为Ω(nlogn)。这个下界引导我们去找问题的一个θ(nlogn)算法。采用分治法思想,考虑将所给的n个点的集合S分成2个子集S1和S2,每个子集中约有n/2个点,然后在每个子集中递归地求其最接近的点对。在这里,一个关键的问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对,因为S1和S2的最接近点对未必就是S的最接近点对。如果组成S的最接近点对的2个点都在S1中或都在S2中,则问题很容易解决。但是,如果这2个点分别在S1和S2中,则对于S1中任一点p,S2中最多只有n/2个点与它构成最接近点对的候选者,仍需做n^2/4次计算和比较才能确定S的最接近点对。因此,依此思路,合并步骤耗时为O(n^2)。整个算法所需计算时间T(n)应满足: T(n)=2T(n/2)+O(n^2)。它的解为T(n)=O(n^2),即与合并步骤的耗时同阶,这不比用穷举的方法好。从解递归方程的套用公式法,我们看到问题出在合并步骤耗时太多。这启发我们把注意力放在合并步骤上。
设S中的n个点为x轴上的n个实数x1,x2,..,xn。最接近点对即为这n个实数中相差最小的2个实数。我们显然可以先将x1,x2,..,xn排好序,然后,用一次线性扫描就可以找出最接近点对。这种方法主要计算时间花在排序上,在排序算法已经证明,时间复杂度为O(nlogn)。然而这种方法无法直接推广到二维的情形。因此,对这种一维的简单情形,我们还是尝试用分治法来求解,并希望能推广到二维的情形。假设我们用x轴上某个点m将S划分为2个子集S1和S2,使得S1={x∈S|x≤m};S2={x∈S|x>m}。这样一来,对于所有p∈S1和q∈S2有p<q。递归地在S1和S2上找出其最接近点对{p1,p2}和{q1,q2},并设d=min{|p1-p2|,|q1-q2|},S中的最接近点对或者是{p1,p2},或者是{q1,q2},或者是某个{p3,q3},其中p3∈S1且q3∈S2。如图所示。
如果S的最接近点对是{p3,q3},即|p3-q3|<d,则p3和q3两者与m的距离不超过d,即|p3-m|<d,|q3-m|<d,也就是说,p3∈(m-d,m],q3∈(m,m+d]。由于在S1中,每个长度为d的半闭区间至多包含一个点(否则必有两点距离小于d),并且m是S1和S2的分割点,因此(m-d,m]中至多包含S中的一个点。同理,(m,m+d]中也至多包含S中的一个点。由图可以看出,如果(m-d,m]中有S中的点,则此点就是S1中最大点。同理,如果(m,m+d]中有S中的点,则此点就是S2中最小点。因此,我们用线性时间就能找到区间(m-d,m]和(m,m+d]中所有点,即p3和q3。从而我们用线性时间就可以将S1的解和S2的解合并成为S的解。也就是说,按这种分治策略,合并步可在O(n)时间内完成。这样是否就可以得到一个有效的算法了呢?还有一个问题需要认真考虑,即分割点m的选取,及S1和S2的划分。选取分割点m的一个基本要求是由此导出集合S的一个线性分割,即S=S1∪S2 ,S1∩S2=Φ,且S1={x|x≤m};S2={x|x>m}。容易看出,如果选取m=[max(S)+min(S)]/2,可以满足线性分割的要求。选取分割点后,再用O(n)时间即可将S划分成S1={x∈S|x≤m}和S2={x∈S|x>m}。然而,这样选取分割点m,有可能造成划分出的子集S1和S2的不平衡。例如在最坏情况下,|S1|=1,|S2|=n-1,由此产生的分治法在最坏情况下所需的计算时间T(n)应满足递归方程:
T(n)=T(n-1)+O(n)
它的解是T(n)=O(n^2)。这种效率降低的现象可以通过分治法中“平衡子问题”的方法加以解决。即通过适当选择分割点m,使S1和S2中有大致相等个数的点。自然地,我们会想到用S的n个点的坐标的中位数来作分割点。在选择算法中介绍的选取中位数的线性时间算法使我们可以在O(n)时间内确定一个平衡的分割点m。
本程序确定平衡点采用m=[max(S)+min(S)]/2方法。如果需要利用中位数作分割点,看结合笔者博文《0005算法笔记——线性时间选择》改写。
一维最接近临近点对问题程序清单如下:
-
- #include "stdafx.h"
- #include <ctime>
- #include <iostream>
- using namespace std;
-
- const int L=100;
-
- struct Pair
- {
- float d;
- float d1,d2;
- };
- float Random();
- int input(float s[]);
- float Max(float s[],int p,int q);
- float Min(float s[],int p,int q);
- template <class Type>
- void Swap(Type &x,Type &y);
- template <class Type>
- int Partition(Type s[],Type x,int l,int r);
- Pair Cpair(float s[],int l,int r);
-
- int main()
- {
- srand((unsigned)time(NULL));
- int m;
- float s[L];
- Pair d;
- m=input(s);
- d=Cpair(s,0,m-1);
- cout<<endl<<"最近点对坐标为: (d1:"<<d.d1<<",d2:"<<d.d2<<")";
- cout<<endl<<"这两点距离为: "<<d.d<<endl;
- return 0;
- }
-
-
- float Random()
- {
- float result=rand()%10000;
- return result*0.01;
- }
-
- int input(float s[])
- {
- int length;
- cout<<"输入点的数目: ";
- cin>>length;
- cout<<"点集在X轴上坐标为:";
- for(int i=0;i<length;i++)
- {
- s[i]=Random();
- cout<<s[i]<<" ";
- }
-
- return length;
- }
-
-
- float Max(float s[],int l,int r)
- {
- float s_max=s[l];
- for(int i=l+1;i<=r;i++)
- if(s_max<s[i])
- s_max=s[i];
- return s_max;
- }
-
- float Min(float s[],int l,int r)
- {
- float s_min=s[l];
- for(int i=l+1;i<=r;i++)
- if(s_min>s[i])
- s_min=s[i];
- return s_min;
- }
-
- template <class Type>
- void Swap(Type &x,Type &y)
- {
- Type temp = x;
- x = y;
- y = temp;
- }
-
- template <class Type>
- int Partition(Type s[],Type x,int l,int r)
- {
- int i = l - 1,j = r + 1;
-
- while(true)
- {
- while(s[++i]<x && i<r);
- while(s[--j]>x);
- if(i>=j)
- {
- break;
- }
- Swap(s[i],s[j]);
- }
- return j;
- }
-
-
- Pair Cpair(float s[],int l,int r)
- {
- Pair min_d={99999,0,0};
-
- if(r-l<1) return min_d;
- float m1=Max(s,l,r),m2=Min(s,l,r);
-
- float m=(m1+m2)/2;
-
-
- int j = Partition(s,m,l,r);
-
- Pair d1=Cpair(s,l,j),d2=Cpair(s,j+1,r);
- float p=Max(s,l,j),q=Min(s,j+1,r);
-
-
- if(d1.d<d2.d)
- {
- if((q-p)<d1.d)
- {
- min_d.d=(q-p);
- min_d.d1=q;
- min_d.d2=p;
- return min_d;
- }
- else return d1;
- }
- else
- {
- if((q-p)<d2.d)
- {
- min_d.d=(q-p);
- min_d.d1=q;
- min_d.d2=p;
- return min_d;
- }
- else return d2;
- }
- }
程序运行结果如下:
该算法的分割步骤和合并步骤总共耗时O(n)。因此,算法耗费的计算时间T(n)满足递归方程:
解此递归方程可得T(n)=O(nlogn)。
2、二维最接近点对问题
将以上过程推广到二维最接近点对问题,设S中的点为平面上的点,它们都有2个坐标值x和y。为了将平面上点集S线性分割为大小大致相等的2个子集S1和S2,我们选取一垂直线l:x=m来作为分割直线。其中m为S中各点x坐标的中位数。由此将S分割为S1={p∈S|px≤m}和S2={p∈S|px>m}。从而使S1和S2分别位于直线l的左侧和右侧,且S=S1∪S2。由于m是S中各点x坐标值的中位数,因此S1和S2中的点数大致相等。递归地在S1和S2上解最接近点对问题,我们分别得到S1和S2中的最小距离d1和d2。现设d=min(d1,d2)。若S的最接近点对(p,q)之间的距离d(p,q)<d则p和q必分属于S1和S2。不妨设p∈S1,q∈S2。那么p和q距直线l的距离均小于d。因此,我们若用P1和P2分别表示直线l的左边和右边的宽为d的2个垂直长条,则p∈S1,q∈S2,如图所示:
距直线l的距离小于d的所有点
在一维的情形,距分割点距离为d的2个区间(m-d,m](m,m+d]中最多各有S中一个点。因而这2点成为唯一的末检查过的最接近点对候选者。二维的情形则要复杂些,此时,P1中所有点与P2中所有点构成的点对均为最接近点对的候选者。在最坏情况下有n2/4对这样的候选者。但是P1和P2中的点具有以下的稀疏性质,它使我们不必检查所有这n^2/4对候选者。考虑P1中任意一点p,它若与P2中的点q构成最接近点对的候选者,则必有d(p,q)<d。满足这个条件的P2中的点有多少个呢?容易看出这样的点一定落在一个d×2d的矩形R中,如下图所示:
包含点q的dX2d矩形R
由d的意义可知P2中任何2个S中的点的距离都不小于d。由此可以推出矩形R中最多只有6个S中的点。事实上,我们可以将矩形R的长为2d的边3等分,将它的长为d的边2等分,由此导出6个(d/2)×(2d/3)的矩形。如左图所示:
矩阵R中点的稀疏性
若矩形R中有多于6个S中的点,则由鸽舍原理易知至少有一个δ×2δ的小矩形中有2个以上S中的点。设u,v是这样2个点,它们位于同一小矩形中,则:
因此d(u,v)≤5d/6<d 。这与d的意义相矛盾。也就是说矩形R中最多只有6个S中的点。图4(b)是矩形R中含有S中的6个点的极端情形。由于这种稀疏性质,对于P1中任一点p,P2中最多只有6个点与它构成最接近点对的候选者。因此,在分治法的合并步骤中,我们最多只需要检查6×n/2=3n对候选者,而不是n^2/4对候选者。这是否就意味着我们可以在O(n)时间内完成分治法的合并步骤呢?现在还不能作出这个结论,因为我们只知道对于P1中每个S1中的点p最多只需要检查P2中的6个点,但是我们并不确切地知道要检查哪6个点。为了解决这个问题,我们可以将p和P2中所有S2的点投影到垂直线l上。由于能与p点一起构成最接近点对候选者的S2中点一定在矩形R中,所以它们在直线l上的投影点距p在l上投影点的距离小于d。由上面的分析可知,这种投影点最多只有6个。因此,若将P1和P2中所有S的点按其y坐标排好序,则对P1中所有点p,对排好序的点列作一次扫描,就可以找出所有最接近点对的候选者,对P1中每一点最多只要检查P2中排好序的相继6个点。
程序清单如下:
-
- #include "stdafx.h"
- #include<time.h>
- #include<iostream>
- #include<cmath>
-
- using namespace std;
- const int M=50;
-
-
- class PointX {
- public:
- int operator<=(PointX a)const
- { return (x<=a.x); }
- int ID;
- float x,y;
- };
-
- class PointY {
- public:
- int operator<=(PointY a)const
- { return(y<=a.y); }
- int p;
- float x,y;
- };
-
- float Random();
- template <class Type>
- float dis(const Type&u,const Type&v);
-
- bool Cpair2(PointX X[], int n,PointX& a,PointX& b, float& d);
- void closest(PointX X[],PointY Y[],PointY Z[], int l, int r,PointX& a,PointX& b,float& d);
-
- template <typename Type>
- void Copy(Type a[],Type b[], int left,int right);
-
- template <class Type>
- void Merge(Type c[],Type d[],int l,int m,int r);
-
- template <class Type>
- void MergeSort(Type a[],Type b[],int left,int right);
-
- int main()
- {
- srand((unsigned)time(NULL));
- int length;
-
- cout<<"请输入点对数:";
- cin>>length;
-
- PointX X[M];
- cout<<"随机生成的二维点对为:"<<endl;
-
- for(int i=0;i<length;i++)
- {
- X[i].ID=i;
- X[i].x=Random();
- X[i].y=Random();
- cout<<"("<<X[i].x<<","<<X[i].y<<") ";
- }
-
- PointX a;
- PointX b;
- float d;
-
- Cpair2(X,length,a,b,d);
-
- cout<<endl;
- cout<<"最邻近点对为:("<<a.x<<","<<a.y<<")和("<<b.x<<","<<b.y<<") "<<endl;
- cout<<"最邻近距离为: "<<d<<endl;
-
- return 0;
- }
-
- float Random()
- {
- float result=rand()%10000;
- return result*0.01;
- }
-
-
- template <class Type>
- inline float dis(const Type& u,const Type& v)
- {
- float dx=u.x-v.x;
- float dy=u.y-v.y;
- return sqrt(dx*dx+dy*dy);
- }
-
- bool Cpair2(PointX X[], int n,PointX& a,PointX& b,float& d)
- {
- if(n<2) return false;
-
- PointX* tmpX = new PointX[n];
- MergeSort(X,tmpX,0,n-1);
-
- PointY* Y=new PointY[n];
- for(int i=0;i<n;i++)
- {
- Y[i].p=i;
- Y[i].x=X[i].x;
- Y[i].y=X[i].y;
- }
-
- PointY* tmpY = new PointY[n];
- MergeSort(Y,tmpY,0,n-1);
-
- PointY* Z=new PointY[n];
- closest(X,Y,Z,0,n-1,a,b,d);
-
- delete []Y;
- delete []Z;
- delete []tmpX;
- delete []tmpY;
- return true;
- }
- void closest(PointX X[],PointY Y[],PointY Z[], int l, int r,PointX& a,PointX& b,float& d)
- {
- if(r-l==1)
- {
- a=X[l];
- b=X[r];
- d=dis(X[l],X[r]);
- return;
- }
-
- if(r-l==2)
- {
- float d1=dis(X[l],X[l+1]);
- float d2=dis(X[l+1],X[r]);
- float d3=dis(X[l],X[r]);
-
- if(d1<=d2 && d1<=d3)
- {
- a=X[l];
- b=X[l+1];
- d=d1;
- return;
- }
-
- if(d2<=d3)
- {
- a=X[l+1];
- b=X[r];
- d=d2;
- }
- else {
- a=X[l];
- b=X[r];
- d=d3;
- }
- return;
- }
-
-
- int m=(l+r)/2;
- int f=l,g=m+1;
-
-
-
-
- for(int i=l;i<=r;i++)
- {
- if(Y[i].p>m) Z[g++]=Y[i];
- else Z[f++]=Y[i];
- }
-
- closest(X,Z,Y,l,m,a,b,d);
- float dr;
-
- PointX ar,br;
- closest(X,Z,Y,m+1,r,ar,br,dr);
-
- if(dr<d)
- {
- a=ar;
- b=br;
- d=dr;
- }
-
- Merge(Z,Y,l,m,r);
-
-
- int k=l;
- for(int i=l;i<=r;i++)
- {
- if(fabs(X[m].x-Y[i].x)<d)
- {
- Z[k++]=Y[i];
- }
- }
-
-
- for(int i=l;i<k;i++)
- {
- for(int j=i+1;j<k && Z[j].y-Z[i].y<d;j++)
- {
- float dp=dis(Z[i],Z[j]);
- if(dp<d)
- {
- d=dp;
- a=X[Z[i].p];
- b=X[Z[j].p];
- }
- }
- }
- }
-
- template <class Type>
- void Merge(Type c[],Type d[],int l,int m,int r)
- {
- int i = l,j = m + 1,k = l;
- while((i<=m)&&(j<=r))
- {
- if(c[i]<=c[j])
- {
- d[k++] = c[i++];
- }
- else
- {
- d[k++] = c[j++];
- }
- }
-
- if(i>m)
- {
- for(int q=j; q<=r; q++)
- {
- d[k++] = c[q];
- }
- }
- else
- {
- for(int q=i; q<=m; q++)
- {
- d[k++] = c[q];
- }
- }
- }
-
- template <class Type>
- void MergeSort(Type a[],Type b[],int left,int right)
- {
- if(left<right)
- {
- int i = (left + right)/2;
- MergeSort(a,b,left,i);
- MergeSort(a,b,i+1,right);
- Merge(a,b,left,i,right);
- Copy(a,b,left,right);
- }
- }
-
- template <typename Type>
- void Copy(Type a[],Type b[], int left,int right)
- {
- for(int i=left;i<=right;i++)
- a[i]=b[i];
- }
程序结果: