#以下所述为我在装过程中踩到的几个坑,目前没有搞明白具体问题出在哪但是已有解决方案,如果有类似情况的可以参考一下。
本文产于2024/1/21
配置:GPU:3060
python:3.8
一、出现的问题
(1)cuda、cudnn安装
版本就根据自己的配置安装
查看Cuda最高支持版本的方法:
终端输入:nvidia-smi(注意中间没有空格,效果如下)
由CUDA Version 可以知道自己电脑最高支持到哪版。
cudnn安装时没踩到什么坑,就是安装完记得拷贝进cuda的下载文件夹中
(2)Pytorch的安装
嗯。。。我踩到的坑挺特别的。
因为下载慢我原本选择的是到清华源去找包下载,但是。。。我找的版本号为1.13.1+cu116.cu116.cp38的torch,但是当我下载下来时查看版本时却是1.12.1+CPU,呃。。。具体原因我尚未搞清楚,有清楚的可以在消息区留个言。
解决办法暴力简单:找别的版本试一下或者直接到pytorch的官网使用,找当相应的版本,使用官网提供的command下载(其实也不是很慢)
(3)tensorflow的安装
tensorflow有使用CPU和GPU的分别:
cpu安装就直接pip install tensorflow就成了,这里并未产生什么错误。
GPU版本的安装出现的问题,说实话我也不是很能理解...(如果有幸有了解相关问题的大牛看到了我的这篇blog请务必在评论区留言),详情如下所述:
以上的安装过程原本是在一个我已经开了很久的一个项目文件下通过终端进行的(终端已换为Anaconda Prompt),安装过程很顺利,但是当我在Pycharm终端中调用python时,我却发现tensorflow无法调用(注:上文中已经安装的torch可以调用),一开始以为是版本问题,经过反复检查肯定版本无误,查找资料过程中有提及到Anaconda的路径有可能未添加到系统路径,经检查后发现路径已经添加到系统路径,除了tensorflow其他安装的库均可以引用,然后。。。我脑袋就死机了。。。
然后我到anaconda prompt中对应的虚拟环境中调用python发现,可以调用,。。。。
情况如上,我百思不得其解,鬼使神差下,我在Pycharm中重新创建了个项目文件在原本的项目文件路径下,在新的项目文件中打开终端,在终端中调用tensorflow,然后。。。问题就解决了。。。呃,具体情况就是这样,如果有遇到相似问题。。。可以参考一下。
二、总结
我感觉我的问题不是不是大部分人在尝试安装tensorflow时遇到的问题,但是至少这些坑我踩到了,我把这种应对方法发一下,希望可以帮到和我碰到相似问题的人。