目标检测之YOLOV3
转载的优秀YOLOV3解读,并附上了自己的理解
loco1223
某厂嵌入式员工,c++码农
展开
-
基于yolov3的轨迹跟踪项目记录
参考:https://blog.csdn.net/xiao__run/article/details/84374959 (选用程序)https://blog.csdn.net/Gavinmiaoc/article/details/88639814https://github.com/mattzheng/keras-yolov3-KF-objectTracking基本架构...原创 2019-07-10 13:59:52 · 2963 阅读 · 0 评论 -
YOLOV3解读(6)
检测函数使用已经训练完成的YOLO v3模型,检测图片中的物体,其中:创建YOLO类的实例yolo;使用Image.open()加载图像image;调用yolo.detect_image()检测图像image;关闭yolo的session;显示检测完成的图像r_image;实现:def detect_img_for_test(): yolo = YOLO() i...转载 2019-06-15 20:41:30 · 2460 阅读 · 1 评论 -
YOLOV3解读(5)
损失层在模型的训练过程中,不断调整网络中的参数,优化损失函数loss的值达到最小,完成模型的训练。在YOLO v3中,损失函数yolo_loss封装自定义Lambda的损失层中,作为模型的最后一层,参于训练。损失层Lambda的输入是已有模型的输出model_body.output和真值y_true,输出是1个值,即损失值。损失层的核心逻辑位于yolo_loss中,yolo_loss除了接收L...转载 2019-06-15 19:58:35 · 3968 阅读 · 4 评论 -
YOLOV3解读(4)
List itemfit_generator在训练中,模型调用fit_generator方法,按批次创建数据,输入模型,进行训练。其中,数据生成器wrapper是data_generator_wrapper,用于验证数据格式,最终调用data_generator,输入参数是:annotation_lines:标注数据的行,每行数据包含图片路径,和框的位置信息,种类等;batch_s...转载 2019-06-15 17:10:07 · 2052 阅读 · 1 评论 -
YOLOV3解读(3)
网络分析DBL: 如图1左下角所示,也就是代码中的Darknetconv2d_BN_Leaky,是yolo_v3的基本组件。就是卷积+BN+Leaky relu。对于v3来说,BN和leaky relu(正则化和激励)已经是和卷积层不可分离的部分了(最后一层卷积除外),共同构成了最小组件。resn:n代表数字,有res1,res2, … ,res8等等,表示这个res_block里含有多少个...转载 2019-06-15 14:58:33 · 13817 阅读 · 5 评论 -
YOLOV3解读(2)
具体分析create_model在create_model方法中,创建YOLO v3的网络结构,其中参数:input_shape:输入图片的尺寸,默认是(416,416);anchors:默认的9种anchor box,shape是(9,2);num_classes:类别数,创建网络只需要类别数即可,类别按0~n排列,输入类别也是索引;load_pretrained:是否使用预训练模型...转载 2019-06-15 12:55:08 · 1563 阅读 · 0 评论 -
YOLOV3解读(1)
xml数据集中的参数图片的位置 框的4个坐标及标签(xmin,ymin,xmax,ymax,label_id)预测特征图(Prediction Feature Map)的anchor框(anchor box)集合3个尺度(scale)的特征图,每个特征图3个anchor框,共9个框,从小到大排列;1 ~ 3是大尺度(52x52)特征图所使用的,4 ~ 6是中尺度(26x26),7 ~ ...转载 2019-06-14 21:59:16 · 3364 阅读 · 6 评论