计算机图形学中的拉格朗日插值算法

 

大家都知道,通过两个点的一次曲线,有且只有一条,通过三个点的二次曲线,有且仅有一条。概括来讲,通过n+1个点的n次曲线,有且仅有一条。那么给定n+1个点,如何确定这个n次方程的n+1个系数呢?即已知1n+1个点的坐标,求xy的映射2。因为这里有n+1个未知数,n+1个等式,我们可以利用矩阵解方程来求解这些系数,但这计算量很大。拉格朗日提出了一个方法,不需要实现求解任何系数即可直接带入运算来求解。简单来讲就是,

3

4。(我们可以理解为5表示6在结果中占的权重)

但在实际应用中,点的数量可能非常巨大,最后会导致方程次数非常高,所以通常选定3次方程作为上限,然后每次处理4个点。采用这个思想,我们可以建立yx之间的映射,然后依次求解。但这时候仍然有个问题,每次面对不同的4个点的时候,必须重新去更新7的值。

为了解决这个问题,我们给空间在增加一个维度t(事实上我们可以假定t即表示点的顺序),然后分别建立xtyt的映射,即89。因为我们每次都是选用的4个点,我们可以每次都给他们指定10,这样 11的值是不变的,也就是说我们在计算出来后就不必再去更新它了。

 

下面的程序代码是我根据校内教材上的源码修改的,更改了函数接口,并修正了其中的一个边界BUG

(程序中指定12

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值