盘点DFS的利与弊
今天我们来说说DFS(深度优先搜索)的好处与坏处。
好处
DFS作为一种搜索算法,其核心思想就是树的先序遍历1(图和树是一样的,图比树多判断了一个有没有访问过该元素)。
比如说树:
这就是一个满二叉树。它的先序遍历是:1245367,如图:
可以看到啊,遍历的点绕了一圈回到了1。
那下面有个树的模版,可以套用。
我们以n叉树举例(C++,其他语言翻译一下就可以了。这里设最大深度为10):
#include<cstdio>
using namespace std;
int n, a[15][15]; //这里设置15是防止溢出
void dfs (int i, int j)
{
if (i == n) printf ("%d", a[i][j]);
for (int k = 1; k <= n; k++)
{
dfs (i + 1, k);
dfs (i + 1, k + 1);
}
printf ("%d", a[i][j]);
}
int main ()
{
scanf ("%d", &n);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)
scanf ("%d", &a[i][j]);
dfs (1, 1);
return 0;
}
好处呢,也是显然易见的:不重复,不遗漏。
那有没有坏处呢?
答案是:有。
坏处
我们可以手工推算一下,照这样算,在最坏情况下,我们要遍历所有的顶点和边。这样,时间复杂度2就为O(VE),其中V为顶点数,E为边数。
有没有办法优化?
有,绝对有。
我们可以在DFS里面加一个记忆化搜索。如果这个访问过,就直接输出结果(主要适用于图),如斐波那契数列,也称兔子数列。
代码如下(20个):
#include<cstdio>
int n;
long long dp[25];
int dfs (int index)
{
if (dp[index]) return dp[index]; //判断是否访问过该斐波那契数
if (index < 3) return dp[index] = 1; //斐波那契的前两项为1
return dp[index] = dfs (index - 1) + dfs (index - 2);
}
int main ()
{
scanf ("%d", &n);
printf ("%d", dfs (n));
return 0;
}
这样,就省去了大部分递归。
拿5举例,原本:
dfs (5)
dfs (4)
dfs (3)
dfs (2)
dfs (1)
dfs (2)
dfs (3)
dfs (2)
dfs (1)
现在:
dfs (5)
dfs (4)
dfs (3)
dfs (2)
dfs (1)
减少了很大一部分时间复杂度。这也是dp(动态规划3的基础)。
这是我第一篇博客,有什么不足记得指出哦~
谢谢!
前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。
若二叉树为空则结束返回,否则:
(1)访问根结点。
(2)前序遍历左子树。
(3)前序遍历右子树 。
需要注意的是:遍历左右子树时仍然采用前序遍历方法。 ↩︎在计算机科学中,时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。 ↩︎
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。 ↩︎