2009年NOIP全国联赛提高组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 钻石 Diamond
题解
题目描述 Description
【问题描述】
C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市。任意两个
城市之间最多只有一条道路直接相连。这m 条道路中有一部分为单向通行的道路,一部分
为双向通行的道路,双向通行的道路在统计条数时也计为1 条。
C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价
格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息
之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设C 国n 个城
市的标号从1~ n,阿龙决定从1 号城市出发,并最终在n 号城市结束自己的旅行。在旅游的
过程中,任何城市可以重复经过多次,但不要求经过所有n 个城市。阿龙通过这样的贸易方
式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另
一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来C 国旅游,他决定
这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C 国有5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路
为单向通行,双向箭头表示这条道路为双向通行。
假设 1~n 号城市的水晶球价格分别为4,3,5,6,1。
阿龙可以选择如下一条线路:1->2->3->5,并在2 号城市以3 的价格买入水晶球,在3
号城市以5 的价格卖出水晶球,赚取的旅费数为2。
阿龙也可以选择如下一条线路 1->4->5->4->5,并在第1 次到达5 号城市时以1 的价格
买入水晶球,在第2 次到达4 号城市时以6 的价格卖出水晶球,赚取的旅费数为5。
现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号
以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入描述 Input Description
第一行包含 2 个正整数n 和m,中间用一个空格隔开,分别表示城市的数目和道路的
数目。
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这n 个城
市的商品价格。
接下来 m 行,每行有3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果z=1,
表示这条道路是城市x 到城市y 之间的单向道路;如果z=2,表示这条道路为城市x 和城市
y 之间的双向道路。
输出描述 Output Description
包含1 个整数,表示最多能赚取的旅费。如果没有进行贸易,
则输出0。
样例输入 Sample Input
5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
样例输出 Sample Output
5
数据范围及提示 Data Size & Hint
【数据范围】
输入数据保证 1 号城市可以到达n 号城市。
对于 10%的数据,1≤n≤6。
对于 30%的数据,1≤n≤100。
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市
水晶球价格≤100。
题解:
正向反向建图,
从起点跑一遍spfa,维护从起点到该点的最小值;
从终点跑一遍spfa,维护从终点到该点的最大值;
循环枚举每个点,找maxx-minn的最大值。
注
由于不一定是最短路上取的最大值,所以spfa里的dis数组不必加,只需要判断维护maxx和minn即可。
codevs上数据较水,代码要仔细检查。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<deque>
using namespace std;
const int maxn=100000+100;
vector<int> tu1[maxn],tu2[maxn];
deque<int> Q;
int vis[maxn],num[maxn],minn[maxn],maxx[maxn];
int x,y,z,n,m,ans;
void build(int a,int b,int c){
tu1[a].push_back(b);//zhengtu
tu2[b].push_back(a);//fantu
if(c==2){
tu1[b].push_back(a);
tu2[a].push_back(b);
}
return ;
}
void spfa1(){
memset(vis,0,sizeof(vis));
while(!Q.empty()) Q.pop_back();
Q.push_back(1);
vis[1]=1;
minn[1]=num[1];
while(!Q.empty()){
int v=Q.front();
Q.pop_front();
// vis[v]=0;
for(int i=0;i<tu1[v].size();i++){
int u=tu1[v][i];
minn[u]=min(num[u],minn[u]);
minn[u]=min(minn[u],minn[v]);
if(vis[u]==0){
Q.push_back(u);
vis[u]=1;
}
}
}
}
void spfa2(){
memset(vis,0,sizeof(vis));
while(!Q.empty()) Q.pop_back();
Q.push_back(n);
vis[n]=1;
maxx[n]=num[n];
while(!Q.empty()){
int v=Q.front();
Q.pop_front();
// vis[v]=0;
for(int i=0;i<tu2[v].size();i++){
int u=tu2[v][i];
maxx[u]=max(num[u],maxx[u]);
maxx[u]=max(maxx[u],maxx[v]);
if(vis[u]==0){
Q.push_back(u);
vis[u]=1;
}
}
}
}
int main(){
memset(minn,0X7f,sizeof(minn));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
for(int j=1;j<=m;j++){
scanf("%d%d%d",&x,&y,&z);
build(x,y,z);
}
spfa1();
spfa2();
for(int i=1;i<=n;i++){
// printf("i=%d min=%d max=%d\n",i,minn[i],maxx[i]);
ans=max(ans,maxx[i]-minn[i]);
}
printf("%d",ans);
return 0;
}