题目:
7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。
由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。
令Q = Sπ
请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。
(除Q外,以上所有数据皆为正整数)
Input
有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。
Output
仅一行,是一个正整数S(若无解则S = 0)。
Sample Input
100
2
Sample Output
68
Hint
圆柱公式
体积V = πR 2H
侧面积A’ = 2πRH
底面积A = πR 2
题解:
dfs+剪枝
从下往上搜的好处:
底面面积确定,可以通过预处理出造i层蛋糕至少需要的体积和剩余体积比较进行剪枝。
void dfs(int pos,int lsr,int lsh,int v,int s){
pos表示当前层数
lsr表示下一层(上一层搜索)的半径
lsh表示下一层的高度
v表示剩余的体积
s表示已有的面积(底部圆形面积+已有侧面积)
比较优秀的剪枝:
1.预处理出造i层蛋糕至少需要的体积和剩余体积比较进行剪枝。
if(v<minn[pos]) return ;
2.v是剩余的体积 2*v/lsr是上面的蛋糕的最小侧面积+s>ans 不是最优解
v=r * r * h
s=2 * r * h
s=2*v/r
v是一定的,当r最大,r=lsr时,侧面积最小
if((2*v/lsr)+s>=ans) return ;
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
int ans=1e9+7;
int n,m,minn[50];
void dfs(int pos,int lsr,int lsh,int v,int s){
if(pos==0){
if(v==0){
ans=min(ans,s);
}
return ;
}
if((2*v/lsr)+s>=ans) return ;
if(v<minn[pos]) return ;
for(int i=lsr-1;i>=pos;i--){
for(int j=lsh-1;j>=pos;j--){
dfs(pos-1,i,j,v-i*i*j,s+2*i*j);
}
}
}
void init(){
int x=1;
for(int i=1;i<=m;i++) minn[i]=minn[i-1]+x*x*x,x++;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=sqrt(n);i>=m;i--){
for(int j=n;j>=m;j--){
dfs(m-1,i,j,n-i*i*j,i*i+2*i*j);
}
}
printf("%d",ans);
return 0;
}