时间限制: 1 s
空间限制: 128000 KB
题目等级 : 大师 Master
题解
题目描述 Description
简单的说,一共N个水果排成一排,切M次,每次切[L,R]区间的所有水果(可能有的水果被重复切),每切完一次输出剩下水果数量
数据已重新装配,不会出现OLE错误
时限和数据范围适当修改,避免数据包过大而浪费空间资源
输入描述 Input Description
第1行共包括2个正整数,分别为N,M。
接下来m行每行两个正整数L,R
输出描述 Output Description
一共输出M行,每行输出切完之后剩下水果数量
样例输入 Sample Input
10 3
3 5
2 8
1 5
样例输出 Sample Output
7
3
2
数据范围及提示 Data Size & Hint
30%的数据满足N,M<=5,000
60%的数据满足N,M<=100,000
100% 的数据满足1<=L<=R<=N<=500,000,1<=M<=500,000
思路:线段树裸题,01修改,没什么好说的。此外,01修改还可以用并查集做,这样更快。
线段树代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int maxn=500000+5;
struct SGT{
int l,r;
int sum;
bool flag;
}tree[maxn<<2];
int n,m;
void update(int p)
{
tree[p].sum=tree[p<<1].sum+tree[p<<1|1].sum;
}
void build(int p,int l,int r)
{
tree[p].l=l;
tree[p].r=r;
if(l==r)
{
tree[p].sum=1;
return;
}
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
update(p);
}
void spread(int p)
{
if(tree[p].flag)
{
tree[p<<1].flag=1;
tree[p<<1].sum=0;
tree[p<<1|1].flag=1;
tree[p<<1|1].sum=0;
tree[p].flag=0;
}
}
void change(int p,int l,int r)
{
if(l<=tree[p].l&&r>=tree[p].r)
{
tree[p].flag=1;
tree[p].sum=0;
return;
}
spread(p);
int mid=(tree[p].l+tree[p].r)>>1;
if(l<=mid) change(p<<1,l,r);
if(r>mid) change(p<<1|1,l,r);
update(p);
}
int ask_sum(int p,int l,int r)
{
if(l<=tree[p].l&&r>=tree[p].r)
{
return tree[p].sum;
}
spread(p);
int mid=(tree[p].l+tree[p].r)>>1;
int ret=0;
if(l<=mid) ret+=ask_sum(p<<1,l,r);
if(r>mid) ret+=ask_sum(p<<1|1,l,r);
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
build(1,1,n);
int a,b;
while(m--)
{
scanf("%d%d",&a,&b);
change(1,a,b);
printf("%d\n",tree[1].sum);
}
return 0;
}