codevs 玛丽卡(最短路路径记录)

时间限制: 2 s
空间限制: 128000 KB
题目等级 : 大师 Master
题解
题目描述 Description
麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复。

因为她和他们不住在同一个城市,因此她开始准备她的长途旅行。

在这个国家中每两个城市之间最多只有一条路相通,并且我们知道从一个城市到另一个城市路上所需花费的时间。

麦克在车中无意中听到有一条路正在维修,并且那儿正堵车,但没听清楚到底是哪一条路。无论哪一条路正在维修,从玛丽卡所在的城市都能到达麦克所在的城市。

玛丽卡将只从不堵车的路上通过,并且她将按最短路线行车。麦克希望知道在最糟糕的情况下玛丽卡到达他所在的城市需要多长时间,这样他就能保证他的女朋友离开该城市足够远。

编写程序,帮助麦克找出玛丽卡按最短路线通过不堵车道路到达他所在城市所需的最长时间(用分钟表示)。

输入描述 Input Description
第一行有两个用空格隔开的数N和M,分别表示城市的数量以及城市间道路的数量。1≤N≤1000,1≤M≤N*(N-1)/2。城市用数字1至N标识,麦克在城市1中,玛丽卡在城市N中。

接下来的M行中每行包含三个用空格隔开的数A,B和V。其中1≤A,B≤N,1≤V≤1000。这些数字表示在A和城市B中间有一条双行道,并且在V分钟内是就能通过。

输出描述 Output Description
输出文件的第一行中写出用分钟表示的最长时间,在这段时间中,无论哪条路在堵车,玛丽卡应该能够到达麦克处,如果少于这个时间的话,则必定存在一条路,该条路一旦堵车,玛丽卡就不能够赶到麦克处。

样例输入 Sample Input
5 7

1 2 8

1 4 10

2 3 9

2 4 10

2 5 1

3 4 7

3 5 10

样例输出 Sample Output
27

数据范围及提示 Data Size & Hint

思路:不妨先从最暴力的方法想起,每条路都可能发生堵车,于是第一想法是枚举每一条路,但这样肯定会T,那怎么办呢?通过进一步分析,我们发现,人物要想耗时最少,那肯定会沿着最短路走,若此时最短路之外的路堵车,那么对答案是没有任何贡献的(因为还是会沿着最短路走),若最短路的其中一段发生堵车,那么人物肯定要绕道而行了。所以我们就可以简化枚举,具体步骤是:
1、先跑一遍spfa,在更新时加个路径记录。
2、顺着最短路径枚举每一段,在暂时删去当前段的同时跑spfa,并更新ans。
时限是2s,所以这么枚举肯定没问题。另外暂时删边有个机智的做法:找到当前要删的边的两个端点A、B,在遍历图时加判断(始点==A 且 目标点==B)或 (始点==B 且 目标点==A),如果成立,但实际上不合法,则continue跳过。
PS:难度说是大师,但我感觉只有黄金呢。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
const int N=1000+5;
const int M=499500+5;
int n,m;
struct EDGE{
    int from,to,dis;
}edge[M<<1];
int head[N],next[M<<1],dist[N],pre[N],tot=0;
bool inq[N];
void build(int f,int t,int d)
{
    ++tot;
    edge[tot]=(EDGE){f,t,d};
    next[tot]=head[f];
    head[f]=tot;
}
queue<int > q;
void spfa(bool type,int lim1,int lim2)
{
    memset(dist,0x3f,sizeof dist);
    memset(inq,0,sizeof inq);
    dist[1]=0;
    q.push(1);
    inq[1]=1;
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        inq[x]=0;
        for(int i=head[x];i;i=next[i])
        {
            int v=edge[i].to;
            if((x==lim1&&v==lim2)||(x==lim2&&v==lim1)) continue;
            if(dist[v]>dist[x]+edge[i].dis)
            {
                dist[v]=dist[x]+edge[i].dis;
                if(type) pre[v]=x;
                if(!inq[v])
                {
                    q.push(v);
                    inq[v]=1;
                }
            }
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    int u,v,z;
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&u,&v,&z);
        build(u,v,z);
        build(v,u,z);
    }
    spfa(1,0,0);
    int ans=0;
    for(int i=n;i;i=pre[i])
    {
        spfa(0,i,pre[i]);
        ans=max(ans,dist[n]);
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值