nyist 737 石子合并(一)(区间dp)

石子合并(一)

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述
    有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
输入
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
输出总代价的最小值,占单独的一行
样例输入
3
1 2 3
7
13 7 8 16 21 4 18
样例输出
9
239

区间dp :

dp【i】【j】表示从i到j区间中所需的最小花费,现在从i到j之间选取一个点k,如果dp【i】【k】+dp【k+1】【j】+sum【j】-sum【i-1】小于dp【i】【j】则更新dp【i】【j】的值

code:

<span style="font-size:18px;">#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N = 220;
const int inf = 0x3f3f3f3f;
int dp[N][N];
int sum[N];
int main()
{
    int n,t,tem,i,j;
    while (~scanf("%d", &n))
    {
        sum[0] = 0;
        for (int i = 1; i<= n; i++)
        {
            scanf("%d",&t);
            sum[i] = sum[i - 1] + t;//记录前缀和
        }
        memset (dp, 0, sizeof(dp));
        for (i = n-1; i >= 1; i--)
            for (j = i + 1; j<= n; j++)
            {
                tmp = inf;
                for (int k = i; k< j; k++)
                    tmp = min(tmp, dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]);
                dp[i][j] = tmp;
            }
        printf("%d\n", dp[1][n]);
    }
    return 0;
}</span>




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值