石子合并(一)
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。
-
输入
-
有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开
输出
- 输出总代价的最小值,占单独的一行 样例输入
-
3 1 2 3 7 13 7 8 16 21 4 18
样例输出
-
9 239
-
有多组测试数据,输入到文件结束。
区间dp :
dp【i】【j】表示从i到j区间中所需的最小花费,现在从i到j之间选取一个点k,如果dp【i】【k】+dp【k+1】【j】+sum【j】-sum【i-1】小于dp【i】【j】则更新dp【i】【j】的值
code:
<span style="font-size:18px;">#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N = 220;
const int inf = 0x3f3f3f3f;
int dp[N][N];
int sum[N];
int main()
{
int n,t,tem,i,j;
while (~scanf("%d", &n))
{
sum[0] = 0;
for (int i = 1; i<= n; i++)
{
scanf("%d",&t);
sum[i] = sum[i - 1] + t;//记录前缀和
}
memset (dp, 0, sizeof(dp));
for (i = n-1; i >= 1; i--)
for (j = i + 1; j<= n; j++)
{
tmp = inf;
for (int k = i; k< j; k++)
tmp = min(tmp, dp[i][k] + dp[k + 1][j] + sum[j] - sum[i - 1]);
dp[i][j] = tmp;
}
printf("%d\n", dp[1][n]);
}
return 0;
}</span>