疯狂 dp(一) 线性 dp

本文详细介绍了动态规划中的线性dp,包括单调递增最长子序列及其应用,如拦截导弹问题和求子序列长度问题。通过具体题目解析,展示了线性dp的状态转移方程和解题思路,并提供了相关代码示例。
摘要由CSDN通过智能技术生成

     动态规划是为了求解一种包含大量重叠子问题的最优化问题的方法。基本思想是,将原问题分解为若干相似的子问题,在求解的过程中通过子问题的解求出原问题的解。听起来和分治法很相似,但是,分治法只是不断地将问题分解成小问题求解,而动规之所以优秀是它会进行类似于记忆化搜索的过程,在求解的过程中把每一个子问题的解保存下来(不管后面会不会用到),然后在求解更大的问题时,从这些子问题的解里面寻求当前问题的最优解。所以,从这里也可以看出动规解法的限定条件是,该问题有一个最优子结构,就是由它分解出的子问题的解也是最优的。

   

    这样看起来是很抽象的,我们接下来一个个模型看下去吧。感觉对 dp 不太好分类,个人就做简单的整理,代码不对或是分类有问题请大家指出,谢谢!

    首先是线性动规。


     单调递增最长子序列

     这个问题的基本模型是,给一个序列,要求它的最长递增子序列,子序列的值是递增的,它的坐标在原序列中也是递增的,但不要求连续。

     如,给一串数字, 0 2 3 4 3 4 6  9 13 24 11 26,那么它的单调递增最长子序列就是 0 2 3 4 6 9 13 24 26

     给一串字母,a f r e f j l m o d, 单调递增最长子序列就是 a e f j l m o


     下面是求一个字母序列的单调递增子序列 

     原题:http://acm.nyist.net/JudgeOnline/problem.php?pid=17


     解1:

     输入字符串为 str, 用一个数组 dp 记录问题的解, dp[i] 表示以 str[i] 结束的单调递增最长子序列的长度。 

     状态转移方程: dp[i] = max(1, dp[j] + 1)  , str[j] < str[i]

     复杂度为 O(n^2)

      代码:    

#include <iostream>
#include <string>
#include <cstring>

using namespace std;

#define max(a,b) (a)>(b)?(a):(b)

int main()
{
	int dp[10001],ans;
	int T;
	cin>>T;
	while(T--)
	{
		ans = 1;
		string str;
		cin>>str;
		int n = str.size();
		for(int i = 0;i < n;++i)
		{
			dp[i] = 1;
			for(int j = 0;j < i;++j)
			{
				if(str[i] > str[j])
				{
					dp[i] = max(dp[i],dp[j] + 1);
					if(dp[i] > ans) ans = dp[i];
				}
			}
		}
		cout<<ans<<endl;
	}
	return 0;
}

    解二:

    数组 dp 存不是答案子序列,但它和子序列长度是一样的,因为它的不断更

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值