动态规划是为了求解一种包含大量重叠子问题的最优化问题的方法。基本思想是,将原问题分解为若干相似的子问题,在求解的过程中通过子问题的解求出原问题的解。听起来和分治法很相似,但是,分治法只是不断地将问题分解成小问题求解,而动规之所以优秀是它会进行类似于记忆化搜索的过程,在求解的过程中把每一个子问题的解保存下来(不管后面会不会用到),然后在求解更大的问题时,从这些子问题的解里面寻求当前问题的最优解。所以,从这里也可以看出动规解法的限定条件是,该问题有一个最优子结构,就是由它分解出的子问题的解也是最优的。
这样看起来是很抽象的,我们接下来一个个模型看下去吧。感觉对 dp 不太好分类,个人就做简单的整理,代码不对或是分类有问题请大家指出,谢谢!
首先是线性动规。
单调递增最长子序列
这个问题的基本模型是,给一个序列,要求它的最长递增子序列,子序列的值是递增的,它的坐标在原序列中也是递增的,但不要求连续。
如,给一串数字, 0 2 3 4 3 4 6 9 13 24 11 26,那么它的单调递增最长子序列就是 0 2 3 4 6 9 13 24 26
给一串字母,a f r e f j l m o d, 单调递增最长子序列就是 a e f j l m o
下面是求一个字母序列的单调递增子序列
原题:http://acm.nyist.net/JudgeOnline/problem.php?pid=17
解1:
输入字符串为 str, 用一个数组 dp 记录问题的解, dp[i] 表示以 str[i] 结束的单调递增最长子序列的长度。
状态转移方程: dp[i] = max(1, dp[j] + 1) , str[j] < str[i]
复杂度为 O(n^2)
代码:
#include <iostream>
#include <string>
#include <cstring>
using namespace std;
#define max(a,b) (a)>(b)?(a):(b)
int main()
{
int dp[10001],ans;
int T;
cin>>T;
while(T--)
{
ans = 1;
string str;
cin>>str;
int n = str.size();
for(int i = 0;i < n;++i)
{
dp[i] = 1;
for(int j = 0;j < i;++j)
{
if(str[i] > str[j])
{
dp[i] = max(dp[i],dp[j] + 1);
if(dp[i] > ans) ans = dp[i];
}
}
}
cout<<ans<<endl;
}
return 0;
}
解二:
数组 dp 存不是答案子序列,但它和子序列长度是一样的,因为它的不断更