poj 1576 A/B(扩展欧几里得算法)

A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2652    Accepted Submission(s): 1944


Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 

Output
对应每组数据输出(A/B)%9973。
 

Sample Input
  
  
2 1000 53 87 123456789
 

Sample Output
  
  
7922 6060

分析:扩展欧几里得算法  ax+by=gcd(a,b)=1 可以求出 x,y的值

设A/B=x1,则结果变成x1%9973;求出x1 则求出结果; 且A=B*x1;

n=A%9973=A-9973*y1,则n=B*x1-9973*y1;

因为 gcd(B,9973)= 1 = B*X+9973Y; 两边*n ,得 n=B*X*n+9973*Y*n;所以x1=X*n

X可以利用扩展欧几里得算法求得;

code:

还要保证结果为正,最后加一步,ans=(x%9973+9973)%9973;

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int k=9973;
void extentgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return ;
    }
    extentgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
}
int main()
{
    int t,n,b,x,y,ans;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&b);
        extentgcd(b,k,x,y);
        x*=n;
        ans=(x%k+k)%k;
        printf("%d\n",ans);
    }
    return 0;
}

数学是神造的科学!!!





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值