A/B
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2652 Accepted Submission(s): 1944
Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2 1000 53 87 123456789
Sample Output
7922 6060
分析:扩展欧几里得算法 ax+by=gcd(a,b)=1 可以求出 x,y的值
设A/B=x1,则结果变成x1%9973;求出x1 则求出结果; 且A=B*x1;
n=A%9973=A-9973*y1,则n=B*x1-9973*y1;
因为 gcd(B,9973)= 1 = B*X+9973Y; 两边*n ,得 n=B*X*n+9973*Y*n;所以x1=X*n
X可以利用扩展欧几里得算法求得;
code:
还要保证结果为正,最后加一步,ans=(x%9973+9973)%9973;
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int k=9973;
void extentgcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1,y=0;
return ;
}
extentgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
}
int main()
{
int t,n,b,x,y,ans;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&b);
extentgcd(b,k,x,y);
x*=n;
ans=(x%k+k)%k;
printf("%d\n",ans);
}
return 0;
}
数学是神造的科学!!!