4.1 基于区间直觉模糊混合平均算子的多属性决策方法
1. 区间直觉模糊加权平均算子
定义4.1 设A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,...,n)\tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,...,n\right)A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,...,n)是一组区间直觉模糊数。若IIFWA\operatorname{IIFWA}IIFWA是一个映射:FIn→FIF_{I}^{n} \rightarrow F_{I}FIn→FI,使得
IIFWAω(A~1,A~2,⋯ ,A~n)=ω1A~1⊕ω2A~2⊕⋯⊕ωnA~n(4.1) \color{red} { \operatorname{IIFWA}_{\omega}\left(\tilde{A}_{1},\tilde{A}_{2},\cdots,\tilde{A}_{n}\right) = \omega_{1}\tilde{A}_{1} \oplus \omega_{2}\tilde{A}_{2} \oplus \cdots \oplus \omega_{n}\tilde{A}_{n} \tag{4.1} } IIFWAω(A~1,A~2,⋯,A~n)=ω1A~1⊕ω2A~2⊕⋯⊕ωnA~n(4.1)
则称IIFWA\operatorname{IIFWA}IIFWA为区间直觉模糊加权平均算子,其中,ω=(ω1,ω2,⋯ ,ωn)T\boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},\cdots,\omega_{n}\right)}^{T}ω=(ω1,ω2,⋯,ωn)T为A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,⋯ ,n){\tilde{A}_{j}} = \left\langle[\mu_{jL},\mu_{jU}],[\nu_{jL},\nu_{jU}]\right\rangle\left(j = 1,2,\cdots,n\right)A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,⋯,n)的权重向量,ωj∈[0,1](j=1,2,...,n),∑j=1nωj=1\omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{\omega_{j}}=1ωj∈[0,1](j=1,2,...,n),∑j=1nωj=1。
特别地,若ω=(1n,1n,⋯ ,1n)T\boldsymbol{\omega} = {\left(\frac{1}{n},\frac{1}{n},\cdots,\frac{1}{n}\right)}^{T}ω=(n1,n1,⋯,n1)T,则IIFWA\operatorname{IIFWA}IIFWA算子退化为区间直觉模糊平均算子:
IIFA(A~1,A~2,⋯ ,A~n)=1n(A~1⊕A~2⊕⋯⊕A~n)(4.2) \operatorname{IIFA}\left(\tilde{A}_{1},\tilde{A}_{2},\cdots,\tilde{A}_{n}\right) = \frac{1}{n}\left(\tilde{A}_{1} \oplus \tilde{A}_{2} \oplus \cdots \oplus \tilde{A}_{n}\right) \tag{4.2} IIFA(A~1,A~2,⋯,A~n)=n1(A~1⊕A~2⊕⋯⊕A~n)(4.2)
定理4.1 设A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,...,n)\tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,...,n\right)A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,...,n)是一组区间直觉模糊数,则由IIFWA\operatorname{IIFWA}IIFWA算子运算得到的结果仍然是区间直觉模糊数,且
IIFWAω(A~1,A~2,...A~n)=⟨[1−∏j=1n(1−μjL)ωj,1−∏j=1n(1−μjU)ωj],[∏j=1n(νjL)ωj,∏j=1n(νjU)ωj]⟩‾(4.3) \color{red} { \underline { \operatorname{IIFWA}_{\omega}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{ \left[1 - {\prod_{j=1}^{n}\left(1 - \mu_{jL}\right)}^{\omega_{j}}, 1 - {\prod_{j=1}^{n}\left(1 - \mu_{jU}\right)}^{\omega_{j}}\right], \left[{\prod_{j=1}^{n}{\left(\nu_{jL}\right)}^{\omega_{j}}}, {\prod_{j=1}^{n}{\left(\nu_{jU}\right)}^{\omega_{j}}}\right] }\right\rangle } } \tag{4.3} IIFWAω(A~1,A~2,...A~n)=⟨[1−j=1∏n(1−μjL)ωj,1−j=1∏n(1−μjU)ωj],[j=1∏n(νjL)ωj,j=1∏n(νjU)ωj]⟩(4.3)
2. 区间直觉模糊有序平均算子
定义4.2 设A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,⋯ ,n)\tilde{A}_{j} = \left\langle\left[\mu_{jL},\mu_{jU}\right],\left[\nu_{jL},\nu_{jU}\right]\right\rangle\left(j=1,2,\cdots,n\right)A~j=⟨[μjL,μjU],[νjL,νjU]⟩(j=1,2,⋯,n)是一组区间直觉模糊数。若IIFWAIIFWAIIFWA是一个映射:FIn→FIF_{I}^{n} \rightarrow F_{I}FIn→FI,使得
IIFOWAω(A~1,A~2,...,A~n)=ω1A~σ(1)⊕ω2A~σ(2)⊕⋯⊕ωnA~σ(n)(4.4) \color{red} { \operatorname{IIFOWA}_{\omega}\left(\tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = \omega_{1}\tilde{A}_{\sigma(1)} \oplus \omega_{2}\tilde{A}_{\sigma(2)} \oplus \cdots \oplus \omega_{n}\tilde{A}_{\sigma(n)} \tag{4.4} } IIFOWAω(A~1,A~2,...,A~n)=ω1A~σ(1)⊕ω2A~σ(2)⊕⋯⊕ωnA~σ(n

本文详细介绍了基于区间直觉模糊混合平均算子的多属性决策方法,涉及区间直觉模糊加权、有序平均和混合平均操作,以及在突发事件应急预案评估中的实际应用步骤。通过实例演示了如何构建决策矩阵、确定权重、计算综合评价并排序方案的过程。
最低0.47元/天 解锁文章
2824

被折叠的 条评论
为什么被折叠?



