Part II. S2. 基于直觉模糊混合几何算子的多属性决策方法

2.1 直觉模糊加权几何算子

定义2.1

  设 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)是一组直觉模糊数,若 IFWG ⁡ \operatorname{IFWG} IFWG是一个映射: F n → F F_{n} \rightarrow F FnF,使得:
IFWG ⁡ ω ( A ~ 1 , A ~ 2 , . . . , A ~ n ) = ( A ~ 1 ) ω 1 ⊕ ( A ~ 2 ) ω 2 ⊕ . . . ⊕ ( A ~ n ) ω n (2.1) \color{red} { {\operatorname{IFWG}_{\omega}}\left( \tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = (\tilde{A}_{1})^{\omega_{1}} \oplus (\tilde{A}_{2})^{\omega_{2}}\oplus...\oplus(\tilde{A}_{n})^{\omega_{n}} \tag{2.1} } IFWGω(A~1,A~2,...,A~n)=(A~1)ω1(A~2)ω2...(A~n)ωn(2.1)
  则称 IFWG ⁡ \operatorname{IFWG} IFWG直觉模糊加权几何算子,其中 ω = ( ω 1 , ω 2 , . . . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,...,n),j=1nωj=1

  特别地,若 ω = ( 1 n , 1 n , . . . , 1 n ) T \boldsymbol{\omega} = {\left(\frac{1}{n},\frac{1}{n},...,\frac{1}{n}\right)}^{T} ω=(n1,n1,...,n1)T,则 IFWG ⁡ \operatorname{IFWG} IFWG算子退化为直觉模糊几何算子:
IFG ⁡ ( A ~ 1 , A ~ 2 , . . . , A ~ n ) = ( A ~ 1 ⊕ A ~ 2 ⊕ . . . ⊕ A ~ n ) 1 n (2.2) {\operatorname{IFG}}\left( \tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = {\left(\tilde{A}_{1} \oplus \tilde{A}_{2}\oplus...\oplus\tilde{A}_{n}\right)}^{\frac{1}{n}} \tag{2.2} IFG(A~1,A~2,...,A~n)=(A~1A~2...A~n)n1(2.2)

定理2.1
  设 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}}_{j} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j=1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)是一组直觉模糊数,则有 IFWG ⁡ \operatorname{IFWG} IFWG算子运算得到的结果仍然是直觉模糊数,且

IFWG ⁡ ω ( A ~ 1 , A ~ 2 , . . . A ~ n ) = ⟨ ∏ j = 1 n ( μ j ) ω j , 1 − ∏ j = 1 n ( 1 − ν j ) ω j ⟩ ‾ (2.3) \color{red} { \underline { \operatorname{IFWG}_{\omega}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{ {\prod_{j=1}^{n}\left(\mu_{j}\right)}^{\omega_{j}}, 1-{\prod_{j=1}^{n}{\left(1-\nu_{j}\right)}^{\omega_{j}}} }\right\rangle } } \tag{2.3} IFWGω(A~1,A~2,...A~n)=j=1n(μj)ωj,1j=1n(1νj)ωj(2.3)

其中, ω = ( ω 1 , ω 2 , . . . , ω n ) T \omega = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) \tilde{A}_{j} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j=1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}\omega_{j}=1 ωj[0,1](j=1,2,...,n),j=1nωj=1

推理过程:
  已知:(1) α 1 ⊕ α 2 = ( μ α 1 + μ α 2 − μ α 1 μ α 2 , ν α 1 ν α 2 ) \alpha_{1} \oplus \alpha_{2} = \left( \mu_{\alpha_{1}} + \mu_{\alpha_{2}} -\mu_{\alpha_{1}}\mu_{\alpha_{2}}, \nu_{\alpha_{1}}\nu_{\alpha_{2}} \right) α1α2=(μα1+μα2μα1μα2,να1να2);(2) α λ = ( μ α λ , 1 − ( 1 − ν α ) λ ) \alpha^\lambda = \left({\mu_\alpha}^{\lambda}, 1 - \left(1-\nu_\alpha\right)^\lambda \right) αλ=(μαλ,1(1να)λ)

  原式: IFWG ⁡ ω ( A ~ 1 , A ~ 2 , . . . , A ~ n ) = ( A ~ 1 ) ω 1 ⊕ ( A ~ 2 ) ω 2 ⊕ . . . ⊕ ( A ~ n ) ω n {\operatorname{IFWG}_{\omega}}\left( \tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = (\tilde{A}_{1})^{\omega_{1}} \oplus (\tilde{A}_{2})^{\omega_{2}}\oplus...\oplus(\tilde{A}_{n})^{\omega_{n}} IFWGω(A~1,A~2,...,A~n)=(A~1)ω1(A~2)ω2...(A~n)ωn

  S1.计算: A ~ 1 ω 1 , A ~ 2 ω 2 , . . . , A ~ n ω n {\tilde{A}_{1}}^{\omega_{1}}, {\tilde{A}_{2}}^{\omega_{2}},...,{\tilde{A}_{n}}^{\omega_{n}} A~1ω1,A~2ω2,...,A~nωn
  R1.可得: T 1 = A ~ 1 ω 1 = ( μ 1 ω 1 , 1 − ( 1 − ν 1 ) ω 1 ) T_{1} = {\tilde{A}_{1}}^{\omega_{1}} = \left({\mu_{1}}^{\omega_{1}},1 - {\left(1 - \nu_{1}\right)}^{\omega_{1}}\right) T1=A~1ω1=(μ1ω1,1(1ν1)ω1) T 2 = A ~ 2 ω 2 = ( μ 2 ω 2 , 1 − ( 1 − ν 2 ) ω 2 ) T_{2} = {\tilde{A}_{2}}^{\omega_{2}} = \left({\mu_{2}}^{\omega_{2}},1 - {\left(1 - \nu_{2}\right)}^{\omega_{2}}\right) T2=A~2ω2=(μ2ω2,1(1ν2)ω2),…, T n = A ~ n ω n = ( μ n ω n , 1 − ( 1 − ν n ) ω n ) T_{n} = {\tilde{A}_{n}}^{\omega_{n}} = \left({\mu_{n}}^{\omega_{n}},1 - {\left(1 - \nu_{n}\right)}^{\omega_{n}}\right) Tn=A~nωn=(μnωn,1(1νn)ωn)
  S2.计算: T 1 ⊕ T 2 T_{1}\oplus T_{2} T1T2
  R2.可得:
T 1 ⊕ T 2 = ( μ 1 ω 1 μ 2 ω 2 , 1 − ( 1 − ν 1 ) ω 1 + 1 − ( 1 − ν 2 ) ω 2 − ( 1 − ( 1 − ν 1 ) ω 1 ) ( 1 − ( 1 − ν 1 ) ω 1 ) ) = ( μ 1 ω 1 μ 2 ω 2 , 2 − ( 1 − ν 1 ) ω 1 − ( 1 − ν 2 ) ω 2 − [ 1 − ( 1 − ν 2 ) ω 2 − ( 1 − ν 1 ) ω 1 + ( 1 − ν 1 ) ω 1 ( 1 − ν 2 ) ω 2 ] ) = ( μ 1 ω 1 μ 2 ω 2 , 1 − ( 1 − ν 1 ) ω 1 ( 1 − ν 2 ) ω 2 ) \begin{aligned} T_{1}\oplus T_{2} &= \left({\mu_{1}}^{\omega_{1}}{\mu_{2}}^{\omega_{2}}, 1 - {\left(1 - \nu_{1}\right)}^{\omega_{1}} + 1 - {\left(1 - \nu_{2}\right)}^{\omega_{2}} - \left(1 - {\left(1 - \nu_{1}\right)}^{\omega_{1}}\right)\left(1 - {\left(1 - \nu_{1}\right)}^{\omega_{1}}\right)\right)\\ &= \left({\mu_{1}}^{\omega_{1}}{\mu_{2}}^{\omega_{2}},2- {\left(1 - \nu_{1}\right)}^{\omega_{1}} - {\left(1 - \nu_{2}\right)}^{\omega_{2}} - \left[1-{\left(1 - \nu_{2}\right)}^{\omega_{2}}-{\left(1 - \nu_{1}\right)}^{\omega_{1}} + {\left(1 - \nu_{1}\right)}^{\omega_{1}}{\left(1 - \nu_{2}\right)}^{\omega_{2}}\right]\right)\\ &= \left({\mu_{1}}^{\omega_{1}}{\mu_{2}}^{\omega_{2}},1-{\left(1 - \nu_{1}\right)}^{\omega_{1}}{\left(1 - \nu_{2}\right)}^{\omega_{2}}\right)\\ \end{aligned} T1T2=(μ1ω1μ2ω2,1(1ν1)ω1+1(1ν2)ω2(1(1ν1)ω1)(1(1ν1)ω1))=(μ1ω1μ2ω2,2(1ν1)ω1(1ν2)ω2[1(1ν2)ω2(1ν1)ω1+(1ν1)ω1(1ν2)ω2])=(μ1ω1μ2ω2,1(1ν1)ω1(1ν2)ω2)
    同理可以计算得到: T 1 ⊕ T 2 ⊕ T 3 = ( μ 1 ω 1 μ 2 ω 2 μ 3 ω 3 , 1 − ( 1 − ν 1 ) ω 1 ( 1 − ν 2 ) ω 2 ( 1 − ν 3 ) ω 3 ) T_{1}\oplus T_{2} \oplus T_{3} = \left({\mu_{1}}^{\omega_{1}}{\mu_{2}}^{\omega_{2}}{\mu_{3}}^{\omega_{3}},1-{\left(1 - \nu_{1}\right)}^{\omega_{1}}{\left(1 - \nu_{2}\right)}^{\omega_{2}}{\left(1 - \nu_{3}\right)}^{\omega_{3}}\right) T1T2T3=(μ1ω1μ2ω2μ3ω3,1(1ν1)ω1(1ν2)ω2(1ν3)ω3)

    依次类推,可得到: T 1 ⊕ T 2 ⊕ . . . ⊕ T n = ( μ 1 ω 1 μ 2 ω 2 . . . μ n ω n , 1 − ( 1 − ν 1 ) ω 1 ( 1 − ν 2 ) ω 2 . . . ( 1 − ν n ) ω n ) T_{1}\oplus T_{2} \oplus...\oplus T_{n} = \left({\mu_{1}}^{\omega_{1}}{\mu_{2}}^{\omega_{2}}...{\mu_{n}}^{\omega_{n}},1-{\left(1 - \nu_{1}\right)}^{\omega_{1}}{\left(1 - \nu_{2}\right)}^{\omega_{2}}...{\left(1 - \nu_{n}\right)}^{\omega_{n}}\right) T1T2...Tn=(μ1ω1μ2ω2...μnωn,1(1ν1)ω1(1ν2)ω2...(1νn)ωn)

    合并结果为: T 1 ⊕ T 2 ⊕ . . . ⊕ T n = ⟨ ∏ j = 1 n ( μ j ) ω j , 1 − ∏ j = 1 n ( 1 − ν j ) ω j ⟩ T_{1}\oplus T_{2} \oplus...\oplus T_{n} = \left\langle{{\prod_{j=1}^{n}{\left(\mu_{j}\right)}^{\omega_{j}}},1-{\prod_{j=1}^{n}\left(1-\nu_{j}\right)}^{\omega_{j}} }\right\rangle T1T2...Tn=j=1n(μj)ωj,1j=1n(1νj)ωj

    即: IFWG ⁡ ω ( A ~ 1 , A ~ 2 , . . . A ~ n ) = ⟨ ∏ j = 1 n ( μ j ) ω j , 1 − ∏ j = 1 n ( 1 − ν j ) ω j ⟩ \operatorname{IFWG}_{\omega}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{{\prod_{j=1}^{n}{\left(\mu_{j}\right)}^{\omega_{j}}},1-{\prod_{j=1}^{n}\left(1-\nu_{j}\right)}^{\omega_{j}}}\right\rangle IFWGω(A~1,A~2,...A~n)=j=1n(μj)ωj,1j=1n(1νj)ωj

   示 例 2.1 \color{red}{示例 2.1} 2.1

  设 A ~ 1 = ⟨ 0.2 , 0.5 ⟩ \tilde{A}_{1}=\left\langle0.2,0.5\right\rangle A~1=0.2,0.5 A ~ 2 = ⟨ 0.7 , 0.1 ⟩ \tilde{A}_{2}=\left\langle0.7,0.1\right\rangle A~2=0.7,0.1 A ~ 3 = ⟨ 0.5 , 0.2 ⟩ \tilde{A}_{3}=\left\langle0.5,0.2\right\rangle A~3=0.5,0.2 A ~ 4 = ⟨ 0.4 , 0.3 ⟩ \tilde{A}_{4}=\left\langle0.4,0.3\right\rangle A~4=0.4,0.3 A ~ 5 = ⟨ 0.6 , 0.2 ⟩ \tilde{A}_{5}=\left\langle0.6,0.2\right\rangle A~5=0.6,0.2为五个直觉模糊数, ω = ( 0.20 , 0.25 , 0.18 , 0.22 , 0.15 ) T \omega={\left(0.20,0.25,0.18,0.22,0.15\right)}^{T} ω=(0.20,0.25,0.18,0.22,0.15)T为该直觉模糊数组权重向量,则 IFWG ⁡ \operatorname{IFWG} IFWG结果是多少?

  代码如下:

import numpy as np

def calculate_IFWG(IF_matrix,weight):
    IFWG = [1,1]
    for i in range(IF_matrix.shape[1]):
        IFWG[0] *= np.power(IF_matrix[0][i],weight[i])
        IFWG[1] *= np.power(1-IF_matrix[1][i],weight[i])
    IFWG[1] = 1 - IFWG[1]
    return IFWG
IF_matrix = np.array([[0.2,0.7,0.5,0.4,0.6],[0.5,0.1,0.2,0.3,0.2]])
weight = np.array([0.20,0.25,0.18,0.22,0.15])

print("IF矩阵:\n",IF_matrix)
print("权重向量:\n",weight)
print('IFWG:\n',calculate_IFWG(IF_matrix,weight))

IF矩阵:
[[0.2 0.7 0.5 0.4 0.6]
[0.5 0.1 0.2 0.3 0.2]]
权重向量:
[0.2 0.25 0.18 0.22 0.15]
IFWG:
[0.4430686230851544, 0.2717241768779469]


2.2 直觉模糊有序几何算子

定义2.2
  设 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)是一组直觉模糊数,若 IFOWG ⁡ \operatorname{IFOWG} IFOWG是一个映射: F n → F F_{n} \rightarrow F FnF,使得:
IFOWG ⁡ w ( A ~ 1 , A ~ 2 , . . . , A ~ n ) = A ~ σ ( 1 ) w 1 ⊕ A ~ σ ( 2 ) w 2 ⊕ . . . ⊕ A ~ σ ( n ) w n (2.4) \color{red} { {\operatorname{IFOWG}_{w}}\left( \tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = {\tilde{A}_{\sigma(1)}}^{w_{1}} \oplus {\tilde{A}_{\sigma(2)}}^{w_{2}}\oplus...\oplus{\tilde{A}_{\sigma(n)}}^{w_{n}} \tag{2.4} } IFOWGw(A~1,A~2,...,A~n)=A~σ(1)w1A~σ(2)w2...A~σ(n)wn(2.4)
  则称 IFOWG ⁡ \operatorname{IFOWG} IFOWG直觉模糊有序加权平均算子,其中 w = ( w 1 , w 2 , . . . , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},...,w_{n}\right)}^{T} w=(w1,w2,...,wn)T为与 IFOWA ⁡ \operatorname{IFOWA} IFOWA算子相关联的权重向量, w j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n w j = 1 w_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{w_{j}}=1 wj[0,1](j=1,2,...,n),j=1nwj=1 ( σ ( 1 ) , σ ( 2 ) , . . . , σ ( n ) ) \left(\sigma(1),\sigma(2),...,\sigma(n)\right) (σ(1),σ(2),...,σ(n))为数组 ( 1 , 2 , . . . , n ) \left(1,2,...,n\right) (1,2,...,n)的一个置换,使得对任意k,有 A ~ σ ( k 1 ) ≥ A ~ σ ( k ) \tilde{A}_{\sigma(k1)}\geq\tilde{A}_{\sigma(k)} A~σ(k1)A~σ(k),即 A ~ σ ( k ) \tilde{A}_{\sigma(k)} A~σ(k)是直觉模糊数 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)按直觉模糊数的排序规则确定的第k个最大直觉模糊数。

  特别地,若 w = ( 1 n , 1 n , . . . , 1 n ) T \boldsymbol{w} = {\left(\frac{1}{n},\frac{1}{n},...,\frac{1}{n}\right)}^{T} w=(n1,n1,...,n1)T,则 IFOWA ⁡ \operatorname{IFOWA} IFOWA算子退化为直觉模平均 IFA ⁡ \operatorname{IFA} IFA算子:
IFOWA ⁡ w ( A ~ 1 , A ~ 2 , . . . , A ~ n ) = 1 n ( A ~ 1 ⊕ A ~ 2 ⊕ . . . ⊕ A ~ n ) {\operatorname{IFOWA}_{w}}\left( \tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = \frac{1}{n}\left(\tilde{A}_{1} \oplus \tilde{A}_{2}\oplus...\oplus\tilde{A}_{n}\right) IFOWAw(A~1,A~2,...,A~n)=n1(A~1A~2...A~n)

定理2.2
  设 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}}_{j} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j=1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)是一组直觉模糊数, A ~ σ ( k ) \tilde{A}_{\sigma(k)} A~σ(k)是直觉模糊数 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)按直觉模糊数的排序规则确定的第k个最大直觉模糊数,则有 IFOWG ⁡ \operatorname{IFOWG} IFOWG算子运算得到的结果仍然是直觉模糊数,且

IFOWG ⁡ w ( A ~ 1 , A ~ 2 , . . . A ~ n ) = ⟨ ∏ j = 1 n ( μ σ ( j ) ) w j , 1 − ∏ j = 1 n ( 1 − ν σ ( j ) ) w j ⟩ ‾ (2.5) \color{red} { \underline { \operatorname{IFOWG}_{w}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{ {\prod_{j=1}^{n}{\left(\mu_{\sigma(j)}\right)}^{w_{j}}}, 1-{\prod_{j=1}^{n}\left(1-\nu_{\sigma(j)}\right)}^{w_{j}} }\right\rangle } } \tag{2.5} IFOWGw(A~1,A~2,...A~n)=j=1n(μσ(j))wj,1j=1n(1νσ(j))wj(2.5)
  其中, w = ( w 1 , w 2 , . . . , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},...,w_{n}\right)}^{T} w=(w1,w2,...,wn)T为与 IFOWG ⁡ \operatorname{IFOWG} IFOWG算子相关联的权重向量, w j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n w j = 1 w_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{w_{j}}=1 wj[0,1](j=1,2,...,n),j=1nwj=1


2.3 直觉模糊混合几何算子

定义2.3
  设 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)是一组直觉模糊数,若 IFHG ⁡ \operatorname{IFHG} IFHG是一个映射: F n → F F_{n} \rightarrow F FnF,使得:
IFHG ⁡ w ( A ~ 1 , A ~ 2 , . . . , A ~ n ) = A ′ ~ σ ( 1 ) w 1 ⊕ A ′ ~ σ ( 2 ) w 2 ⊕ . . . ⊕ A ′ ~ σ ( n ) w n (2.6) \color{red} { {\operatorname{IFHG}_{w}}\left( \tilde{A}_{1},\tilde{A}_{2},...,\tilde{A}_{n}\right) = {\tilde{A^{'}}_{\sigma(1)}}^{w_{1}} \oplus {\tilde{A^{'}}_{\sigma(2)}}^{w_{2}}\oplus...\oplus {\tilde{A^{'}}_{\sigma(n)}}^{w_{n}} \tag{2.6} } IFHGw(A~1,A~2,...,A~n)=A~σ(1)w1A~σ(2)w2...A~σ(n)wn(2.6)
  则称 IFHG ⁡ \operatorname{IFHG} IFHG直觉模糊混合平均算子,其中 w = ( w 1 , w 2 , . . . , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},...,w_{n}\right)}^{T} w=(w1,w2,...,wn)T为与 IFHG ⁡ \operatorname{IFHG} IFHG算子相关联的权重向量, w j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n w j = 1 w_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{w_{j}}=1 wj[0,1](j=1,2,...,n),j=1nwj=1 A ′ ~ j = ( A ~ j ) n ω j = ⟨ μ ′ j , ν ′ j ⟩ ( j = 1 , 2 , . . . , n ) \tilde{A^{'}}_{j} = {\left(\tilde{A}_{j}\right)}^{n\omega_{j}}=\left\langle{\mu^{'}}_{j},{\nu^{'}}_{j}\right\rangle\left(j=1,2,...,n\right) A~j=(A~j)nωj=μj,νj(j=1,2,...,n) ( A ′ ~ σ ( 1 ) , A ′ ~ σ ( 2 ) , . . . , A ′ ~ σ ( n ) ) \left(\tilde{A^{'}}_{\sigma(1)},\tilde{A^{'}}_{\sigma(2)},...,\tilde{A^{'}}_{\sigma(n)}\right) (A~σ(1),A~σ(2),...,A~σ(n))为加权的直觉模糊数数组 ( A ′ ~ 1 , A ′ ~ 2 , . . . , A ′ ~ n ) \left(\tilde{A^{'}}_{1},\tilde{A^{'}}_{2},...,\tilde{A^{'}}_{n}\right) (A~1,A~2,...,A~n)的一个置换,使得对任意k,有 A ′ ~ σ ( k − 1 ) ≥ A ′ ~ σ ( k ) \tilde{A^{'}}_{\sigma(k-1)}\geq\tilde{A^{'}}_{\sigma(k)} A~σ(k1)A~σ(k),即 A ′ ~ σ ( k ) \tilde{A^{'}}_{\sigma(k)} A~σ(k)是直觉模糊数 A ′ ~ j = ⟨ μ j ′ , ν j ′ ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A^{'}}_{j}} = \left\langle\mu^{'}_{j},\nu^{'}_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)按直觉模糊数的排序规则确定的第 k k k个最大直觉模糊数。 ω = ( ω 1 , ω 2 , . . . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,...,n),j=1nωj=1 n n n为平衡系数。

  特别地,若 w = ( 1 n , 1 n , . . . , 1 n ) T \boldsymbol{w} = {\left(\frac{1}{n},\frac{1}{n},...,\frac{1}{n}\right)}^{T} w=(n1,n1,...,n1)T,则 IFHG ⁡ \operatorname{IFHG} IFHG算子退化为直觉模糊加权几何算子 IFWG ⁡ \operatorname{IFWG} IFWG;若 ω = ( 1 n , 1 n , . . . , 1 n ) T \boldsymbol{\omega} = {\left(\frac{1}{n},\frac{1}{n},...,\frac{1}{n}\right)}^{T} ω=(n1,n1,...,n1)T,则 IFHG ⁡ \operatorname{IFHG} IFHG算子退化为直觉模糊有序加权几何算子 IFOWG ⁡ \operatorname{IFOWG} IFOWG

定理2.3
  设 A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}}_{j} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j=1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)是一组直觉模糊数,令 A ′ ~ j = A ~ j n ω j = ⟨ μ j ′ , ν j ′ ⟩ ( j = 1 , 2 , . . . , n ) \tilde{A^{'}}_{j} = {\tilde{A}_{j}}^{n\omega_{j}}=\left\langle\mu^{'}_{j},\nu^{'}_{j}\right\rangle\left(j=1,2,...,n\right) A~j=A~jnωj=μj,νj(j=1,2,...,n) A ′ ~ σ ( k ) \tilde{A^{'}}_{\sigma(k)} A~σ(k)是直觉模糊数 A ′ ~ j = ⟨ μ j ′ , ν j ′ ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A^{'}}_{j}} = \left\langle\mu^{'}_{j},\nu^{'}_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)中按直觉模糊数的排序规则确定的第 k k k个最大直觉模糊数,则有 I F H G \boldsymbol{IFHG} IFHG算子运算得到的结果仍然是直觉模糊数,且

IFHG ⁡ ω , w ( A ~ 1 , A ~ 2 , . . . A ~ n ) = ⟨ 1 − ∏ j = 1 n ( 1 − μ σ ( j ) ′ ) w j , ∏ j = 1 n ( ν σ ( j ) ′ ) w j ⟩ ‾ (2.7) \color{red} { \underline { \operatorname{IFHG}_{\omega,w}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{ 1-{\prod_{j=1}^{n}\left(1-\mu^{'}_{\sigma(j)}\right)}^{w_{j}}, {\prod_{j=1}^{n}{\left(\nu^{'}_{\sigma(j)}\right)}^{w_{j}}} }\right\rangle } } \tag{2.7} IFHGω,w(A~1,A~2,...A~n)=1j=1n(1μσ(j))wj,j=1n(νσ(j))wj(2.7)

  其中, w = ( w 1 , w 2 , . . . , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},...,w_{n}\right)}^{T} w=(w1,w2,...,wn)T为与 IFOWG ⁡ \operatorname{IFOWG} IFOWG算子相关联的权重向量, w j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n w j = 1 w_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{w_{j}}=1 wj[0,1](j=1,2,...,n),j=1nwj=1
ω = ( ω 1 , ω 2 , . . . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T A ~ j = ⟨ μ j , ν j ⟩ ( j = 1 , 2 , . . . , n ) {\tilde{A}_{j}} = \left\langle\mu_{j},\nu_{j}\right\rangle\left(j = 1,2,...,n\right) A~j=μj,νj(j=1,2,...,n)的权重向量, ω j ∈ [ 0 , 1 ] ( j = 1 , 2 , . . . , n ) , ∑ j = 1 n ω j = 1 \omega_{j} \in [0,1]\left(j=1,2,...,n\right),\sum_{j=1}^{n}{\omega_{j}}=1 ωj[0,1](j=1,2,...,n),j=1nωj=1 n n n为平衡系数。

   示 例 2.3 \color{red}{示例2.3} 2.3

  设 A ~ 1 = ⟨ 0.2 , 0.5 ⟩ \tilde{A}_{1}=\left\langle0.2,0.5\right\rangle A~1=0.2,0.5 A ~ 2 = ⟨ 0.3 , 0.4 ⟩ \tilde{A}_{2}=\left\langle0.3,0.4\right\rangle A~2=0.3,0.4 A ~ 3 = ⟨ 0.5 , 0.1 ⟩ \tilde{A}_{3}=\left\langle0.5,0.1\right\rangle A~3=0.5,0.1 A ~ 4 = ⟨ 0.7 , 0.2 ⟩ \tilde{A}_{4}=\left\langle0.7,0.2\right\rangle A~4=0.7,0.2 A ~ 4 = ⟨ 0.6 , 0.3 ⟩ \tilde{A}_{4}=\left\langle0.6,0.3\right\rangle A~4=0.6,0.3为五个直觉模糊数, ω = ( 0.25 , 0.15 , 0.20 , 0.18 , 0.22 ) T \omega={\left(0.25,0.15,0.20,0.18,0.22\right)}^{T} ω=(0.25,0.15,0.20,0.18,0.22)T A ~ j ( j = 1 , 2 , 3 , 4 , 5 ) \tilde{A}_{j}\left(j=1,2,3,4,5\right) A~j(j=1,2,3,4,5)的权重向量, w = ( 0.112 , 0.236 , 0.304 , 0.236 , 0.112 ) T w={\left(0.112,0.236,0.304,0.236,0.112\right)}^{T} w=(0.112,0.236,0.304,0.236,0.112)T为与 IFHG ⁡ \operatorname{IFHG} IFHG算子相关联的权重向量, 则 IFHG ⁡ \operatorname{IFHG} IFHG结果是多少?

  代码如下:

import numpy as np

def calculate_weight_IF(IF_matrix,weight_IF):
    weight_IF_ = weight_IF * IF_matrix.shape[1] # 计算<A_j_'> = (<A_j>)^(n×<w_j>)
    weighted_IF_matrix = np.zeros(IF_matrix.shape) # 初始化矩阵用于存放加权后的结果
    weighted_IF_matrix[0] = np.power(IF_matrix[0],weight_IF_)  # 计算加权后的μ_i = (<u_i>)^<w_i>
    weighted_IF_matrix[1] = 1 - np.power(1 - IF_matrix[1],weight_IF_) # 计算加权后的v_i = 1-(1-<v_i>)^<w_i>
    return weighted_IF_matrix

def IF_rank(IF_matrix):
    # 计算每个直觉模糊数的得分值score=μ-v
    score = IF_matrix[0] - IF_matrix[1]
    # 按照得分值从大到小进行重新排序
    index = np.argsort(-score)  # 获取从大到小排序索引
    IF_sequence_matrix = np.zeros(IF_matrix.shape)  # 初始化结果矩阵
    for i in range(IF_matrix.shape[1]):  # 更新结果矩阵
        IF_sequence_matrix[0][i] = IF_matrix[0][index[i]]
        IF_sequence_matrix[1][i] = IF_matrix[1][index[i]]
    return score,IF_sequence_matrix,index

def calculate_IFHG(IF_sequence_matrix,weight):
    IFHG = [1,1]
    for i in range(IF_sequence_matrix.shape[1]):
        IFHG[0] *= np.power(IF_sequence_matrix[0][i],weight[i])
        IFHG[1] *= np.power(1-IF_sequence_matrix[1][i],weight[i])
    IFHG[1] = 1 - IFHG[1]
    return IFHG
# 输入
IF_matrix = np.array([[0.2,0.3,0.5,0.7,0.6],[0.5,0.4,0.1,0.2,0.3]])
weight_IF = np.array([0.25,0.15,0.20,0.18,0.22])
weight_IFHA = np.array([0.112,0.236,0.304,0.236,0.112])

# S1: 计算加权直觉模糊数A_j_'
weighted_IF_matrix = calculate_weight_IF(IF_matrix,weight_IF)
print('Weighted_IF_matrix:\n',weighted_IF_matrix)
# S2:计算A_j_'的得分值
# S3:排序
ranked_IF = IF_rank(weighted_IF_matrix)
print('\nscores: {}\nRanked_IF:{}\nindex: {}\n'.format(ranked_IF[0],ranked_IF[1],ranked_IF[2]+1))
# S4:计算IFHA
IFHG = calculate_IFHG(ranked_IF[1],weight_IFHA)
print('\nIFHG:\n',IFHG)

  计算结果如下:

Weighted_IF_matrix:
[[0.13374806 0.40536005 0.5 0.72541785 0.57012013]
[0.57955179 0.31826838 0.1 0.18194785 0.32452723]]
scores: [-0.44580373 0.08709167 0.4 0.54346999 0.2455929 ]
Ranked_IF:[[0.72541785 0.5 0.57012013 0.40536005 0.13374806]
[0.18194785 0.1 0.32452723 0.31826838 0.57955179]]
index: [4 3 5 2 1]
IFHG:
[0.44540105671448443, 0.2981859482602651]


2.4 基于直觉模糊混合几何算子的多属性决策步骤

  基于直觉模糊混合几何算子的多属性决策步骤
  步骤 1 确定多属性决策问题的方案集 Y = { Y 1 , Y 2 , . . . , Y m } Y=\left\{Y_{1},Y_{2},...,Y_{m}\right\} Y={Y1,Y2,...,Ym}和属性集 G = { G 1 , G 2 , . . . , G n } G=\left\{G_{1},G_{2},...,G_{n}\right\} G={G1,G2,...,Gn}
  步骤 2 获取多属性决策问题中各方案 Y i ∈ Y Y_{i} \in Y YiY关于属性 G j ∈ G G_{j} \in G GjG的直觉模糊特征信息,构建直觉模糊决策矩阵 F F F
  步骤 3 确定多属性决策问题各属性的权重,得到属性权重向量 ω = ( ω 1 , ω 2 , . . . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T
  步骤 4 利用正态分布赋权法等确定与 IFHA ⁡ \operatorname{IFHA} IFHA算子相关联的权重向量(或位置向量) w = ( w 1 , w 2 , . . . , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},...,w_{n}\right)}^{T} w=(w1,w2,...,wn)T
  步骤 4 利用 IFHG ⁡ ω , w ( A ~ 1 , A ~ 2 , . . . A ~ n ) = ⟨ 1 − ∏ j = 1 n ( 1 − μ σ ( j ) ′ ) ω j , ∏ j = 1 n ( ν σ ( j ) ′ ) ω j ⟩ \operatorname{IFHG}_{\omega,w}\left({\tilde{A}_{1}},{\tilde{A}_{2}},...{\tilde{A}_{n}}\right) = \left\langle{ 1-{\prod_{j=1}^{n}\left(1-\mu^{'}_{\sigma(j)}\right)}^{\omega_{j}},{\prod_{j=1}^{n}{\left(\nu^{'}_{\sigma(j)}\right)}^{\omega_{j}}} }\right\rangle IFHGω,w(A~1,A~2,...A~n)=1j=1n(1μσ(j))ωj,j=1n(νσ(j))ωj计算方案 Y i Y_{i} Yi的综合属性值 d ~ i = IFHG ⁡ w , ω ( ( ~ F ) i 1 , ( ~ F ) i 2 , . . . , ( ~ F ) i n , ) \tilde{d}_{i} = \operatorname{IFHG}_{w,\omega}\left(\tilde(F)_{i1},\tilde(F)_{i2},...,\tilde(F)_{in},\right) d~i=IFHGw,ω((~F)i1,(~F)i2,...,(~F)in,)。首先利用属性权重 w = ( w 1 , w 2 , . . . , w n ) T \boldsymbol{w} = {\left(w_{1},w_{2},...,w_{n}\right)}^{T} w=(w1,w2,...,wn)T和平衡系数 n n n计算加权的直觉模糊数 F ′ ~ i j = F ~ i j … … n w j \tilde{F^{'}}_{ij} = {\tilde{F}_{ij}}……{n{w_j}} F~ij=F~ijnwj,然后利用直觉模糊数的排序规则对 F ′ ~ i j ( j = 1 , 2 , . . . , n ) \tilde{F^{'}}_{ij}\left(j=1,2,...,n\right) F~ij(j=1,2,...,n)进行排序,得到直觉模糊数组 F ′ ~ σ ( 1 ) , F ′ ~ σ ( 2 ) , . . . , F ′ ~ σ ( n ) \tilde{F^{'}}_{\sigma(1)},\tilde{F^{'}}_{\sigma(2)},...,\tilde{F^{'}}_{\sigma(n)} F~σ(1),F~σ(2),...,F~σ(n);最后根据与 IFHG ⁡ \operatorname{IFHG} IFHG算子相关的权重向量 ω = ( ω 1 , ω 2 , . . . , ω n ) T \boldsymbol{\omega} = {\left(\omega_{1},\omega_{2},...,\omega_{n}\right)}^{T} ω=(ω1,ω2,...,ωn)T计算方案 Y i Y_{i} Yi的综合属性值 d ~ i = IFHG ⁡ w , ω ( F ~ i 1 , F ~ i 2 , . . . , F ~ i n ) \tilde{d}_{i}=\operatorname{IFHG}_{w,\omega}\left(\tilde{F}_{i1},\tilde{F}_{i2},...,\tilde{F}_{in}\right) d~i=IFHGw,ω(F~i1,F~i2,...,F~in)


2.5 基于直觉模糊混合几何算子的多属性决策的实例分析

   示 例 2.4 \color{red}{示例2.4} 2.4

  考虑地方政府公共财政支出绩效评价问题。公共财政支出绩效评价是对财政支出活动的经济性、效率性、有效性进行评价,可以从教育支出绩效( G 1 G_{1} G1)、养老支出绩效( G 2 G_{2} G2)、就业支出绩效( G 3 G_{3} G3)和基础设施建设支出绩效( G 4 G_{4} G4)四个方面进行绩效评估。假设通过调研与专家咨询可以获得五个地区 Y i ( i = 1 , 2 , 3 , 4 , 5 ) Y_{i}(i=1,2,3,4,5) Yi(i=1,2,3,4,5)关于属性 G j ( j = 1 , 2 , 3 , 4 ) G_{j}(j=1,2,3,4) Gj(j=1,2,3,4)的直觉模糊评价结果如下表所示。同时利用层次分析法可以得到属性 G j ( j = 1 , 2 , 3 , 4 ) G_{j}(j=1,2,3,4) Gj(j=1,2,3,4)的权重向量为 ω = ( 0.273 , 0.279 , 0.275 , 0.173 ) T \omega={(0.273,0.279,0.275,0.173)}^{T} ω=(0.273,0.279,0.275,0.173)T。假设由正态分布赋权法得到与 IFHG ⁡ \operatorname{IFHG} IFHG算子相关联的权重向量 w = ( 0.2 , 0.3 , 0.3 , 0.2 ) w=\left(0.2,0.3,0.3,0.2\right) w=(0.2,0.3,0.3,0.2)

G 1 G_1 G1 G 2 G_2 G2 G 3 G_3 G3 G 4 G_4 G4
Y 1 Y_1 Y1 ⟨ 0.51 , 0.44 ⟩ \langle0.51,0.44\rangle 0.51,0.44 ⟨ 0.45 , 0.32 ⟩ \langle0.45,0.32\rangle 0.45,0.32 ⟨ 0.40 , 0.55 ⟩ \langle0.40,0.55\rangle 0.40,0.55 ⟨ 0.35 , 0.50 ⟩ \langle0.35,0.50\rangle 0.35,0.50
Y 2 Y_2 Y2 ⟨ 0.45 , 0.50 ⟩ \langle0.45,0.50\rangle 0.45,0.50 ⟨ 0.36 , 0.45 ⟩ \langle0.36,0.45\rangle 0.36,0.45 ⟨ 0.45 , 0.40 ⟩ \langle0.45,0.40\rangle 0.45,0.40 ⟨ 0.70 , 0.20 ⟩ \langle0.70,0.20\rangle 0.70,0.20
Y 3 Y_3 Y3 ⟨ 0.65 , 0.30 ⟩ \langle0.65,0.30\rangle 0.65,0.30 ⟨ 0.55 , 0.40 ⟩ \langle0.55,0.40\rangle 0.55,0.40 ⟨ 0.50 , 0.42 ⟩ \langle0.50,0.42\rangle 0.50,0.42 ⟨ 0.45 , 0.50 ⟩ \langle0.45,0.50\rangle 0.45,0.50
Y 4 Y_4 Y4 ⟨ 0.60 , 0.25 ⟩ \langle0.60,0.25\rangle 0.60,0.25 ⟨ 0.75 , 0.15 ⟩ \langle0.75,0.15\rangle 0.75,0.15 ⟨ 0.65 , 0.25 ⟩ \langle0.65,0.25\rangle 0.65,0.25 ⟨ 0.50 , 0.35 ⟩ \langle0.50,0.35\rangle 0.50,0.35
Y 5 Y_5 Y5 ⟨ 0.55 , 0.30 ⟩ \langle0.55,0.30\rangle 0.55,0.30 ⟨ 0.50 , 0.35 ⟩ \langle0.50,0.35\rangle 0.50,0.35 ⟨ 0.55 , 0.15 ⟩ \langle0.55,0.15\rangle 0.55,0.15 ⟨ 0.55 , 0.20 ⟩ \langle0.55,0.20\rangle 0.55,0.20

  代码如下:

import numpy as np

def calculate_weight_IF_IFHG(IF_matrix,weight_IF):
    weight_IF_ = IF_matrix.shape[1]*weight_IF # 计算<A_j_'> = (<A_j>)^(n×<w_j>)
    weighted_IF_matrix = np.zeros(IF_matrix.shape) # 初始化矩阵用于存放加权后的结果
    weighted_IF_matrix[0] = np.power(IF_matrix[0],weight_IF_)  # 计算加权后的μ_i = (<u_i>)^<w_i>
    weighted_IF_matrix[1] = 1 - np.power(1 - IF_matrix[1],weight_IF_) # 计算加权后的v_i = 1-(1-<v_i>)^<w_i>
    return weighted_IF_matrix

def IF_rank_IFHG(IF_matrix):
    # 计算每个直觉模糊数的得分值score=μ-v
    score = IF_matrix[0] - IF_matrix[1]
    # 按照得分值从大到小进行重新排序
    index = np.argsort(-score)  # 获取从大到小排序索引
    IF_sequence_matrix = np.zeros(IF_matrix.shape)  # 初始化结果矩阵
    for i in range(IF_matrix.shape[1]):  # 更新结果矩阵
        IF_sequence_matrix[0][i] = IF_matrix[0][index[i]]
        IF_sequence_matrix[1][i] = IF_matrix[1][index[i]]
    return score,IF_sequence_matrix,index

def calculate_IFHG(IF_sequence_matrix,weight):
    IFHG = [1,1]
    for i in range(IF_sequence_matrix.shape[1]):
        IFHG[0] *= np.power(IF_sequence_matrix[0][i],weight[i])
        IFHG[1] *= np.power(1-IF_sequence_matrix[1][i],weight[i])
    IFHG[1] = 1 - IFHG[1]
    return IFHG

# 输入
IF_matrix_IFHG = np.array([[[0.51,0.45,0.40,0.35],[0.44,0.32,0.55,0.50]],
                           [[0.45,0.36,0.45,0.70],[0.50,0.45,0.40,0.20]],
                           [[0.65,0.55,0.50,0.45],[0.30,0.40,0.42,0.50]],
                           [[0.60,0.75,0.65,0.50],[0.25,0.15,0.25,0.35]],
                           [[0.55,0.50,0.55,0.55],[0.30,0.35,0.15,0.20]]])
weight_IF_IFHG = np.array([0.273,0.279,0.275,0.173])
weight_IFHG = np.array([0.2,0.3,0.3,0.2])

# S1: 计算加权直觉模糊数A_j_'
weighted_IF_matrix_IFHG = []
for item in IF_matrix_IFHG:
    #print(weight_attr_4)
    weighted_IF_matrix_IFHG.append(calculate_weight_IF_IFHG(item,weight_IF_IFHG))
print('\nWeight_IF_Matrix:\n',weighted_IF_matrix_IFHG)

score_IFHG = []
ranked_IF_IFHG = []
index_IFHG = []
for item in weighted_IF_matrix_IFHG:
    tmp_rlt = IF_rank_IFHG(item)
    score_IFHG.append(tmp_rlt[0])
    ranked_IF_IFHG.append(tmp_rlt[1])
    index_IFHG.append(tmp_rlt[2])
print('\nscore: {}\nRanked_IF_IFHG:{}\nIndex_IFHG: {}'.format(score_IFHG,ranked_IF_IFHG,index_IFHG))
# S4:计算IFHA
IFHG_Result = []
for item in ranked_IF_IFHG:
    IFHG_Result.append(calculate_IFHG(item,weight_IFHG))
print('\nIFHG:\n',IFHG_Result)
# 再次排序
IFHG_Result_2 = np.array(IFHG_Result)
tmp_matrix = np.zeros((2,IFHG_Result_2.shape[0]))
for i in range(tmp_matrix.shape[1]):
    tmp_matrix[0][i] = IFHG_Result_2[i][0]
    tmp_matrix[1][i] = IFHG_Result_2[i][1]

score,final_result,index = IF_rank_IFHG(tmp_matrix)
print('\nFinal score: \n',score)
print('\nFinal Result: \n',final_result)
print('Final Index: \n',index+1)

  计算结果如下:

Weight_IF_Matrix:
[array([[0.47936534, 0.41019009, 0.36497741, 0.48360979],
[0.46908949, 0.34975062, 0.58453565, 0.38100485]]), array([[0.41812686, 0.31976696, 0.41546435, 0.78128204],
[0.5308894 , 0.48684949, 0.42987987, 0.14308396]]), array([[0.62474298, 0.51315051, 0.4665165 , 0.57547049],
[0.32259709, 0.43452059, 0.45074908, 0.38100485]]), array([[0.57245475, 0.72538466, 0.62259366, 0.61899515],
[0.26958968, 0.16587426, 0.27126876, 0.25777421]]), array([[0.52056631, 0.46137125, 0.51808254, 0.66119716],
[0.32259709, 0.38168283, 0.16370246, 0.14308396]])]
score: [array([ 0.01027586, 0.06043947, -0.21955823, 0.10260494]), array([-0.11276254, -0.16708253, -0.01441552, 0.63819808]), array([0.30214589, 0.07862991, 0.01576742, 0.19446564]), array([0.30286507, 0.5595104 , 0.3513249 , 0.36122094]), array([0.19796922, 0.07968842, 0.35438008, 0.5181132 ])]
Ranked_IF_IFHG:[array([[0.48360979, 0.41019009, 0.47936534, 0.36497741],
[0.38100485, 0.34975062, 0.46908949, 0.58453565]]), array([[0.78128204, 0.41546435, 0.41812686, 0.31976696],
[0.14308396, 0.42987987, 0.5308894 , 0.48684949]]), array([[0.62474298, 0.57547049, 0.51315051, 0.4665165 ],
[0.32259709, 0.38100485, 0.43452059, 0.45074908]]), array([[0.72538466, 0.61899515, 0.62259366, 0.57245475],
[0.16587426, 0.25777421, 0.27126876, 0.26958968]]), array([[0.66119716, 0.51808254, 0.52056631, 0.46137125],
[0.14308396, 0.16370246, 0.32259709, 0.38168283]])]
Index_IFHG: [array([3, 1, 0, 2], dtype=int64), array([3, 2, 0, 1], dtype=int64), array([0, 3, 1, 2], dtype=int64), array([1, 3, 2, 0], dtype=int64), array([3, 2, 0, 1], dtype=int64)]
IFHG:
[[0.43395805570821366, 0.4460448768044488], [0.44820927151279855, 0.42877251908288205], [0.5419934328192367, 0.4010993532851309], [0.6301290295254321, 0.24683398721603678], [0.5322783547272674, 0.2573361600206997]]
Final score:
[-0.01208682 0.01943675 0.14089408 0.38329504 0.27494219]
Final Result:
[[0.63012903 0.53227835 0.54199343 0.44820927 0.43395806]
[0.24683399 0.25733616 0.40109935 0.42877252 0.44604488]]
Final Index:
[4 5 3 2 1]

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值