- 使用
nvcc -V
查看cuda的版本,注意不是nvidia-smi
。关于两者的区别:简而言之,CUDA有2个主要的API,runtime和driver API。nvidia-smi
报告当前GPU driver的版本,而nvcc -V
报告runtime的版本。一般而言,nvidia-smi
报告的 CUDA 版本在数值上等于或高于nvcc -V
报告的版本(为了兼容性,新的driver兼容旧的runtime API)。关于nvcc vs nvidia-smi
更多的查看这里
- 使用如下命令安装pytorch 1.6
pip install torch==1.6.0 torchvision
,根据提示重启colab
- 检查pytorch的版本,可以看到安装成功。
注意:尽管我们的cuda版本高于pytorch1.6官方建议安装的cudatoolkit版本,但这也是可以运行的。因为pytorch1.6安装时所要求的cudatoolkit只是一个python的包,仅包含了pytorch运行时所需的一些东西,不等于nvidia发布的完全版的安装程序。具体看这里