tensor .t() vs .T

本文探讨了PyTorch中.t()与.T转置函数的差异,.t()仅适用于2维以下张量,是.transpose的简写;而.T基于.permute,适用于n维张量转置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch中.t()与.T都表示转置,那么区别是什么呢?

查阅官方文档,发现 .t().transpose函数的简写版本,但两者都 只能对2维以下的tensor进行转置

在这里插入图片描述

>>> x = torch.randn(())
>>> x
tensor(0.1995)
>>> torch.t(x)
tensor(0.1995)
>>> x = torch.randn(3)
>>> x
tensor([ 2.4320, -0.4608,  0.7702])
>>> torch.t(x)
tensor([.2.4320,.-0.4608,..0.7702])
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.4875,  0.9158, -0.5872],
        [ 0.3938, -0.6929,  0.6932]])
>>> torch.t(x)
tensor([[ 0.4875,  0.3938],
        [ 0.9158, -0.6929],
        [-0.5872,  0.6932]])

.transpose函数对一个n维tensor交换其任意两个维度的顺序
在这里插入图片描述
.T.permute 函数的简化版本,不仅可以操作2维tensor,甚至可以对n维tensor进行转置。当然当维数n=2时,.t().T 效果是一样的。
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值