今天在学习模型测试的时候遇到这个问题:
RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
把代码和报错发给gpt3.5让他给我看了下,回答我的是:
这个错误通常是因为你的模型和输入数据类型不匹配。根据错误信息,看起来你的模型的权重(parameters)是在GPU上,但输入数据是在CPU上的。
GPT给我的解决方法:
方法一:将输入数据转移到GPU上
image = image.to(device) # 将输入数据移动到GPU
这里的 device
可以通过 torch.device
指定为GPU:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
方法二:将模型参数移动到CPU上
如果你希望在CPU上处理输入数据,可以将模型参数移动到CPU上
model.to('cpu') # 将模型参数移动到CPU
方法三:检查模型和输入数据的类型
确保模型和输入数据的类型一致。你可以通过打印模型和输入数据的 .dtype
属性来检查它们的类型。(这个检查方法不知道是不是对的,不知道怎么验证它,其他三个方法试了都能使程序正常运行)
print(model)
print(image.dtype)
方法四:检查模型保存时的设备
如果模型在保存时是在GPU上训练的,并且你在加载模型时未指定 map_location
,PyTorch 会默认加载到 GPU 上。你可以通过添加 map_location
参数来指定加载模型时的设备:
model = torch.load("tudui_0.pth", map_location=torch.device('cpu'))