RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the

今天在学习模型测试的时候遇到这个问题:
RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor

把代码和报错发给gpt3.5让他给我看了下,回答我的是:

这个错误通常是因为你的模型和输入数据类型不匹配。根据错误信息,看起来你的模型的权重(parameters)是在GPU上,但输入数据是在CPU上的。
 

GPT给我的解决方法:
方法一:将输入数据转移到GPU上

image = image.to(device)  # 将输入数据移动到GPU

        这里的 device 可以通过 torch.device 指定为GPU:

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

方法二:将模型参数移动到CPU上

如果你希望在CPU上处理输入数据,可以将模型参数移动到CPU上

model.to('cpu')  # 将模型参数移动到CPU

方法三:检查模型和输入数据的类型

确保模型和输入数据的类型一致。你可以通过打印模型和输入数据的 .dtype 属性来检查它们的类型。(这个检查方法不知道是不是对的,不知道怎么验证它,其他三个方法试了都能使程序正常运行)

print(model)
print(image.dtype)

方法四:检查模型保存时的设备

如果模型在保存时是在GPU上训练的,并且你在加载模型时未指定 map_location,PyTorch 会默认加载到 GPU 上。你可以通过添加 map_location 参数来指定加载模型时的设备:

model = torch.load("tudui_0.pth", map_location=torch.device('cpu'))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值