ShardingSphere实例讲解

ShardingSphere(原名 Sharding-JDBC)是一个开源的分布式数据库中间件,它为Java应用提供了透明的数据库分片、读写分离、分布式事务等功能。在使用ShardingSphere时,应用不需要了解数据库分片的实现细节,它会自动将SQL请求路由到正确的数据库和表。

以下是一个简单的ShardingSphere-JDBC实例讲解,展示如何在Java项目中配置和使用Sharding-JDBC进行数据库分片。

1. 依赖配置

在项目的 pom.xml 中添加 Sharding-JDBC 的依赖:

<dependency>
    <groupId>org.apache.shardingsphere</groupId>
    <artifactId>sharding-jdbc-core</artifactId>
    <version>5.0.0</version>
</dependency>

2. 配置 Sharding-JDBC

Sharding-JDBC 配置有两种方式:YAML 配置Java 配置。下面我们使用 Java 配置方式来进行数据库分片配置。

配置数据源和分片规则

import org.apache.shardingsphere.api.ShardingDataSourceFactory;
import org.apache.shardingsphere.sharding.api.config.TableRuleConfiguration;
import org.apache.shardingsphere.sharding.api.config.ShardingRuleConfiguration;
import org.apache.shardingsphere.sharding.api.config.strategy.StandardShardingStrategyConfiguration;
import org.apache.shardingsphere.sharding.api.config.strategy.InlineShardingStrategyConfiguration;
import org.apache.shardingsphere.sharding.api.config.strategy.NoneShardingStrategyConfiguration;
import org.apache.shardingsphere.jdbc.core.datasource.ShardingDataSource;
import javax.sql.DataSource;
import java.util.HashMap;
import java.util.Map;

public class ShardingJdbcExample {
    public static void main(String[] args) throws Exception {
        // 配置数据源
        Map<String, DataSource> dataSourceMap = new HashMap<>();
        dataSourceMap.put("ds0", createDataSource("jdbc:mysql://localhost:3306/db_0", "root", "password"));
        dataSourceMap.put("ds1", createDataSource("jdbc:mysql://localhost:3306/db_1", "root", "password"));
        
        // 配置分片规则
        ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
        
        // 配置表的分片规则
        TableRuleConfiguration tableRuleConfig = new TableRuleConfiguration();
        tableRuleConfig.setLogicTable("t_order");  // 逻辑表名
        tableRuleConfig.setActualDataNodes("ds${0..1}.t_order${0..1}");  // 实际节点配置,表示在ds0、ds1上分别有t_order0、t_order1表
        
        // 配置分片策略,按订单ID进行分片
        tableRuleConfig.setDatabaseShardingStrategyConfig(new InlineShardingStrategyConfiguration("order_id", "ds${order_id % 2}"));
        tableRuleConfig.setTableShardingStrategyConfig(new InlineShardingStrategyConfiguration("order_id", "t_order${order_id % 2}"));
        
        // 将表规则配置到分片规则中
        shardingRuleConfig.getTableRuleConfigs().add(tableRuleConfig);
        
        // 创建数据源
        ShardingDataSource dataSource = (ShardingDataSource) ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig);
        
        // 使用Sharding-JDBC的数据源进行操作
        // 可以通过JDBC连接池或Spring集成的方式来获取连接并执行SQL查询
    }

    // 创建数据源的工具方法
    private static DataSource createDataSource(String url, String username, String password) {
        // 在实际开发中,可以使用连接池(如 HikariCP)来优化性能
        return DataSourceBuilder.create()
                .url(url)
                .username(username)
                .password(password)
                .driverClassName("com.mysql.cj.jdbc.Driver")
                .build();
    }
}

3. 表结构设计

假设我们有一个表 t_order,它包含如下字段:

CREATE TABLE t_order (
    order_id INT NOT NULL,
    user_id INT,
    order_date DATE,
    PRIMARY KEY (order_id)
);

为了演示分片,配置了 order_id 字段作为分片键。Sharding-JDBC 会根据 order_id 字段将数据路由到不同的数据库和表。

4. 分片规则配置

  • 数据库分片:根据 order_id % 2 来决定将数据存储到哪个数据库(ds0ds1)。

表分片:根据 order_id % 2 来决定将数据存储到哪张表(t_order0t_order1)。

ds0:
    t_order0
    t_order1

ds1:
    t_order0
    t_order1

5. 执行SQL操作

Sharding-JDBC 自动处理 SQL 的路由,所以在应用层你只需要像操作普通数据库一样执行 SQL 语句。例如,插入一条订单记录:

Connection connection = dataSource.getConnection();
PreparedStatement stmt = connection.prepareStatement("INSERT INTO t_order (order_id, user_id, order_date) VALUES (?, ?, ?)");
stmt.setInt(1, 1001);  // order_id
stmt.setInt(2, 1);     // user_id
stmt.setDate(3, Date.valueOf("2024-12-01"));  // order_date
stmt.executeUpdate();

Sharding-JDBC 会根据 order_id 的值将数据插入到正确的数据库和表中。

6. Sharding-JDBC 支持的功能

  • 数据源分片:将数据分布到不同的数据库。
  • 表分片:将表中的数据拆分到多个表中。
  • 读写分离:支持主从读写分离,在高并发读操作时将查询请求路由到从库。
  • 分布式事务:Sharding-JDBC 提供了分布式事务的支持,保证跨库、跨表的事务一致性。

7. 高级配置

除了简单的分片和表策略,Sharding-JDBC 还支持更复杂的路由和事务管理,例如:

  • ShardingSphere-JDBC 高级路由策略:可以实现更灵活的分片策略,如范围分片、哈希分片等。
  • 分布式事务:支持 XA 和 TCC(分布式事务)等事务模式,确保数据一致性。
  • SQL 解析和优化:Sharding-JDBC 会对 SQL 进行解析和优化,保证路由过程高效。

总结

Sharding-JDBC 是一个强大的分布式数据库中间件,通过简单的配置,可以轻松实现数据的分片、读写分离以及分布式事务等功能。它支持透明的数据库操作,让开发人员无需关心底层的数据库分片细节,从而提升系统的可扩展性和性能。

希望这个实例讲解能帮助你理解如何在 Java 项目中配置和使用 Sharding-JDBC。如果你有更复杂的需求,也可以深入了解 Sharding-JDBC 的高级特性和配置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉墨的夜

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值