sklearn.metrics.pairwise.paired_distances

该函数用于计算两组数据X和Y之间的配对距离,适用于(X[0], Y[0]),(X[1], Y[1])等的配对计算。支持欧几里得距离等多种距离度量方式。" 136277432,1430994,Kubernetes进程管理实践与原理,"['kubernetes', '云原生', '容器管理', 'Deployment', 'Job']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sklearn.metrics.pairwise.paired_distances

sklearn.metrics.pairwise.paired_distances(X, Y, metric=’euclidean’, **kwds)

计算X和Y之间的配对距离。
计算(X [0],Y [0]),(X [1],Y [1])等之间的距离。

参数:

X : ndarray (n_samples, n_features)用于距离计算的数组1。
Y : ndarray (n_samples, n_features)用于距离计算的数组2。
metric : string or callable计算要素数组中实例之间的距离时使用的度量。 如果metric是字符串,则它必须是PAIRED_DISTANCES中指定的选项之一,包括“ euclidean”,“ manhattan”或“ cosine”。 或者,如果metric是可调用函数,则在每对实例(行)上调用它,并记录结果值。 可调用对象应将X的两个数组作为输入,并返回一个指示它们之间距离的值。

返回:

distances : ndarray (n_samples, )一个距离数组

官网例子

>>> from sklearn.metrics.pairwise import paired_distances
>>> X = [[0, 1], [1, 1]]
>>> Y = [[0, 1], [2, 1]]
>>> paired_distances(X, Y)
array([0., 1.])

类似用法
sklearn.metrics.pairwise_distances 计算每对样本之间的距离

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值