目标检测-One Stage-YOLOv2


前言

根据前文目标检测-One Stage-YOLOv1可以看出YOLOv1的主要缺点是:

  • 和Fast-CNN相比,速度快,但精度下降。(边框回归不加限制)

YOLOv2提出了一些改进策略,如anchor-based等


提示:以下是本篇文章正文内容,下面内容可供参考

一、YOLOv2的网络结构和流程

  1. 将影像输入卷积网络(DarkNet-19+残差连接)得到13 × 13特征图
  2. 引入anchor机制,与SSD不同的是,每个特征点对应5个anchor,且anchor的大小是由VOC 和 COCO数据集聚类得到的

ps:由于变为anchor-based算法,预测框由YOLOv1的98个变为845(13 × 13 × 5)个,mAP由69.5略微降到69.2,召回率却由81大大提升至88

  1. 将上一步得到的anchor输入分类和边框回归器
  2. 使用非极大值抑制NMS去除冗余窗口

下图可以比较清晰的看出YOLOv2的主要结构

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学海一叶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值