文章目录
前言
根据前文目标检测-One Stage-YOLOv1可以看出YOLOv1的主要缺点是:
- 和Fast-CNN相比,速度快,但精度下降。(边框回归不加限制)
YOLOv2提出了一些改进策略,如anchor-based等
提示:以下是本篇文章正文内容,下面内容可供参考
一、YOLOv2的网络结构和流程
- 将影像输入卷积网络(DarkNet-19+残差连接)得到13 × 13特征图
- 引入anchor机制,与SSD不同的是,每个特征点对应5个anchor,且anchor的大小是由VOC 和 COCO数据集聚类得到的
ps:由于变为anchor-based算法,预测框由YOLOv1的98个变为845(13 × 13 × 5)个,mAP由69.5略微降到69.2,召回率却由81大大提升至88
- 将上一步得到的anchor输入分类和边框回归器
- 使用非极大值抑制NMS去除冗余窗口
下图可以比较清晰的看出YOLOv2的主要结构