前言
自2022年ChatGPT诞生以来,LLM获得了收获了大量关注和研究,但究其根本,技术还是要为应用服务,如何将LLM应用于实际的业务场景成为了诸多工程师思考的问题。
从ChatGPT引入强化学习以来,基于LLM的Agent(智能体)概念再次火爆起来,本文旨在对Agent的起源、发展、现状进行一定程度的探究。
一、Agent是什么?
Agent(智能体)概念最早由人工智能领域的研究者提出,旨在模拟人类的智能行为。最初的Agent系统主要集中在解决特定问题或领域,如专家系统、规则引擎等。
20世纪80年代末和90年代初,随着计算机和网络技术的发展,Agent开始融入到各种应用中,如搜索引擎、个人助理等。
强化学习等技术的兴起(2014年起,深度强化学习出现)使得Agent能够通过与环境的交互来学习和优化其行为。
直到现在,基于LLM和深度强化学习结合的Agent已经成为人工智能领域的核心研究方向之一,涉及到智能系统、机器人、游戏、自动化等多个领域。
简而言之,现在的Agent就是LLM + Planning + Memory + Tools,让大模型实现任务自动化,并且能够不断探索、规划和发展新技能。
下面举几个LLM Agent案例。
二、LLM Agent
1.西部世界小镇Agent
2023年3月,斯坦福制作了西部世界小镇Agent,构建出了一个虚拟小镇,让25个AI智能体在其中生存、从事复杂行为。
为了生成智能体,研究者提出了一种全新架构,它扩展了大语言模型,能够使用自然语言存储Agent的经历。随着时间的推移,这些记忆会被合成为更高级别的反射,智能体可以动态检索它们,来规划自己的行为。最终,用户可以使用自然语言和全镇的25个Agent都实现交互。
如上,生成式智能体的架构实现了一个记忆「检索」(Retrieve)功能,这一功能将智能体的当前情况/感知(Perceive)作为输入,并返回记忆流(Memory Stream)的一个子集(Retrieved Memories)传递给语言模型,而检索功能有多种可能的实现方式,具体取决于智能体在决定如何行动时考虑的重要因素。