【LeetCode】Max Points on a Line

题目:

Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.


分析:

我们可以从简单的情况入手分析。假设有三个点A、B、C,最容易想到的思路是先计算直线AB的斜率,在计算BC的斜率,如果两个斜率相等,由于有公共点B,则A、B、C三点共线,但是这种思路,当再有一个点D的时候,如果k(AB)(AB的斜率)==k(CD),我们还不能确定四点共线。于是我们需要转换思路:以A为观察点,遍历A之后的点,计算其与A所形成直线的斜率,如果有两个斜率相等,则可以保证对应的三个点是共线的,同时用变量记录最大点数。对B和C也进行类似的操作,返回最后得到的最大点数即可。


关键:

1、直线的斜率和其经过的一个点的坐标,这两个条件可以确定一条直线;

2、采用哈希表来存储出现过的斜率及其次数;

3、特别注意一些特殊输入。


测试用例:

1、功能测试:有三个点以上在同一直线上;没有三个点以上在同一直线上;有重复点出现;有两个点的斜率不存在

2、特殊测试:空数组;只有一个点;


/**
 * Definition for a point.
 * class Point {
 *     int x;
 *     int y;
 *     Point() { x = 0; y = 0; }
 *     Point(int a, int b) { x = a; y = b; }
 * }
 */
public class Solution {
    public int maxPoints(Point[] points) {
        if(points==null || points.length==0)
            return 0;
        HashMap<Double,Integer> map=new HashMap<Double,Integer>();
        
        int max=1;
        
        for(int i=0;i<points.length;i++){
            map.clear();
            map.put((double)Integer.MIN_VALUE,1);
            
            int dup=0;
            for(int j=i+1;j<points.length;j++){
                if(points[j].x==points[i].x && points[j].y == points[i].y){
                    dup++;
                    continue;
                }
                
                double key=points[j].x-points[i].x==0 ? Integer.MAX_VALUE:0.0+(double)(points[j].y-points[i].y)/(double)(points[j].x-points[i].x);
                if(map.containsKey(key)){
                    map.put(key,map.get(key)+1);
                }else{
                    map.put(key,2);
                }
            }
            
            for(int temp:map.values()){
                if(temp+dup>max)
                    max=temp+dup;
            }
        }
        return max;
    }
}


内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值