题目:
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
分析:
我们可以从简单的情况入手分析。假设有三个点A、B、C,最容易想到的思路是先计算直线AB的斜率,在计算BC的斜率,如果两个斜率相等,由于有公共点B,则A、B、C三点共线,但是这种思路,当再有一个点D的时候,如果k(AB)(AB的斜率)==k(CD),我们还不能确定四点共线。于是我们需要转换思路:以A为观察点,遍历A之后的点,计算其与A所形成直线的斜率,如果有两个斜率相等,则可以保证对应的三个点是共线的,同时用变量记录最大点数。对B和C也进行类似的操作,返回最后得到的最大点数即可。
关键:
1、直线的斜率和其经过的一个点的坐标,这两个条件可以确定一条直线;
2、采用哈希表来存储出现过的斜率及其次数;
3、特别注意一些特殊输入。
测试用例:
1、功能测试:有三个点以上在同一直线上;没有三个点以上在同一直线上;有重复点出现;有两个点的斜率不存在
2、特殊测试:空数组;只有一个点;
/**
* Definition for a point.
* class Point {
* int x;
* int y;
* Point() { x = 0; y = 0; }
* Point(int a, int b) { x = a; y = b; }
* }
*/
public class Solution {
public int maxPoints(Point[] points) {
if(points==null || points.length==0)
return 0;
HashMap<Double,Integer> map=new HashMap<Double,Integer>();
int max=1;
for(int i=0;i<points.length;i++){
map.clear();
map.put((double)Integer.MIN_VALUE,1);
int dup=0;
for(int j=i+1;j<points.length;j++){
if(points[j].x==points[i].x && points[j].y == points[i].y){
dup++;
continue;
}
double key=points[j].x-points[i].x==0 ? Integer.MAX_VALUE:0.0+(double)(points[j].y-points[i].y)/(double)(points[j].x-points[i].x);
if(map.containsKey(key)){
map.put(key,map.get(key)+1);
}else{
map.put(key,2);
}
}
for(int temp:map.values()){
if(temp+dup>max)
max=temp+dup;
}
}
return max;
}
}