动态规划——01背包问题

题目

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度

以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N

    for v=V..0

        f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符。

自己写了二维和一维的0-1背包代码:


#include <stdio.h>

int a[100][100];
int w[100],v[100];
int f[100];

int KNAP(int n,int m)
{
	int i,j;
	
	for(j=0;j<=m;j++)
		a[0][j]=0;
	for(i=1;i<=n;i++)
		a[i][0]=0;
	
	for(i=1;i<=n;i++)
		for(j=0;j<=m;j++)
		{
			a[i][j]=a[i-1][j];
			if(j>=w[i]&&(a[i-1][j-w[i]]+v[i]>a[i-1][j]))
			  a[i][j]=a[i-1][j-w[i]]+v[i];
		}
	return a[n][m];
}


int KNAP_1(int n,int m)
{
	int i,j;
	for(j=0;j<=m;j++)
		f[j]=0;
	for(i=1;i<=n;i++)
		for(j=m;j>=w[i];j--)
			f[j]=f[j]>f[j-w[i]]+v[i]?f[j]:f[j-w[i]]+v[i];
 return f[m];
}



int main()
{
	int i,n,m;
	
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		for(i=1;i<=n;i++)
			scanf("%d",&w[i]);
		for(i=1;i<=n;i++)
			scanf("%d",&v[i]);
		
	    printf("%d\n",KNAP_1(n,m));
	}

	return 0;
}

看到网上有人写了关于两种初始化不同时的情况。就把代码也粘贴过来了:

#include <iostream>
 using namespace std ; 
 const  int V = 1000 ;  //总的体积 
 const  int T = 5 ;    //物品的种类 
 int f[V+1] ;
 //#define EMPTY                                      //可以不装满 
 int w[T] = {8 , 10 , 4 , 5 , 5};        //价值 
 int c[T] = {600 , 400 , 200 , 200 , 300};        //每一个的体积 
 const int INF = -66536  ;
   
 int package()
 {
 #ifdef EMPTY
    for(int i = 0 ; i <= V ;i++) //条件编译,表示背包可以不存储满
      f[i] = 0 ;    
 #else
    f[0] = 0 ;
    for(int i = 1 ; i <= V ;i++)//条件编译,表示背包必须全部存储满
      f[i] = INF ;   
 #endif
    
    for(int i = 0 ; i < T ; i++)
    {
      for(int v = V ; v >= c[i] ;v--) //必须全部从V递减到0
         {              
           f[v] = max(f[v-c[i]] + w[i] , f[v])  ; //此f[v]实质上是表示的是i-1次之前的值。
         }                 
    }
    return f[V] ;        
 }
 
 int main()
 {
      
   int temp = package() ;   
   cout<<temp<<endl     ;   
   system("pause")      ;
   return 0 ;    
 } 


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值