今天,想用Python读取一下Excel中的数据,从网上查找了一个例子,是要安装相关的模块:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
   
  
  
 
  
  
  
 
  
  
  
 
  
  
  
 
  
  
  
 
  
  
  
 
  
 
 
 
 
 
 
 
 
 
  
  
   
  
   
   
     
    
    
     
      
    
   
  
        table.cell(0,0).value #单元格的值'
  
 
 
                
                1:到python官网下载http://pypi.python.org/pypi/xlrd模块安装,前提是已经安装了python 环境。
 
 
          下好之后,把
 xlrd-0.9.3.tar.gz
 解压后 ,把
 xlrd
 目录 直接拷贝到 python安装目录下的 Lib/site-packages/ 下,即可
  
 
 
 或者 运行CMD安装:
 
 
 
  和手工解压的也一样,会把xlrd复制到C:\Python27\Lib\site-packages下:
 
 
读取Excel数据的代码
#!/usr/bin/python 
  #-*- encoding: utf-8 -*-
 
 
  
  '''
 
 
  
  Created on 2014年6月19日
 
 
  
  @author: Administrator
 
 
  
  '''
 
 
  
  import  xdrlib ,sys
 
 
  
  import xlrd
 
 
  
  def open_excel(file= 'c:/2255888.xls'):
 
 
  
      try:
 
 
  
          data = xlrd.open_workbook(file)
 
 
  
          return data
 
 
  
      except Exception,e:
 
 
  
          print str(e)
 
 
  
  #根据索引获取Excel表格中的数据   参数:file:Excel文件路径     colnameindex:表头列名所在行的所以  ,by_index:表的索引
 
 
  
  def excel_table_byindex(file= 'c:/2255888.xls',colnameindex=0,by_index=0):
 
 
  
      data = open_excel(file)
 
 
  
      table = data.sheets()[by_index]
 
 
  
      nrows = table.nrows #行数
 
 
  
      ncols = table.ncols #列数
 
 
  
      colnames =  table.row_values(colnameindex) #某一行数据 
 
 
  
      list =[]
 
 
  
      for rownum in range(1,nrows):
 
 
  
           row = table.row_values(rownum)
 
 
  
           if row:
 
 
  
               app = {}
 
 
  
               for i in range(len(colnames)):
 
 
  
                  app[colnames[i]] = row[i] 
 
 
  
               list.append(app)
 
 
  
      return list
 
 
  
  #根据名称获取Excel表格中的数据   参数:file:Excel文件路径     colnameindex:表头列名所在行的所以  ,by_name:Sheet1名称
 
 
  
  def excel_table_byname(file= 'c:/2255888.xls',colnameindex=0,by_name=u'sheet1'):
 
 
  
      data = open_excel(file)
 
 
  
      table = data.sheet_by_name(by_name)
 
 
  
      nrows = table.nrows #行数 
 
 
  
      colnames =  table.row_values(colnameindex) #某一行数据 
 
 
  
      list =[]
 
 
  
      for rownum in range(1,nrows):
 
 
  
           row = table.row_values(rownum)
 
 
  
           if row:
 
 
  
               app = {}
 
 
  
               for i in range(len(colnames)):
 
 
  
                  app[colnames[i]] = row[i]
 
 
  
               list.append(app)
 
 
  
      return list
 
 
  
  def main():
 
 
  
     tables = excel_table_byindex()
 
 
  
     for row in tables:
 
 
  
         print row
 
 
  
     tables = excel_table_byname()
 
 
  
     for row in tables:
 
 
  
          print row
 
 
  
  if __name__=="__main__":
 
 
  
      main()
结果如下:这个结果是读取到excel了,但还是要优化一下数据
 
 结果如下:这个结果是读取到excel了,但还是要优化一下数据
从网上查找到的一些使用技巧
获取一个工作表
 
          table = data.sheets()[0]          #通过索引顺序获取
 
 
  
          
  table = data.sheet_by_index(0) #通过索引顺序获取
 
 
  
          table = data.sheet_by_name(u'Sheet1')#通过名称获取
 
 
  
          获取整行和整列的值(数组)
 
 
 
            table.row_values(i)
  
 
  
            table.col_values(i)
  
 
  
          获取行数和列数
 
 
 
           nrows = table.nrows
  
 
  
           ncols = table.ncols
  
 
  
            
    循环行列表数据
   
 
   
            for i in range(nrows ):
   
 
   
          print table.row_values(i)
   
 
   
     单元格
    
 
    
     cell_A1 = table.cell(0,0).value
    
 
    
     cell_C4 = table.cell(2,3).value
    
 
    
     使用行列索引
    
 
    
     cell_A1 = table.row(0)[0].value
    
 
    
     cell_A2 = table.col(1)[0].value 
    
 
    
      简单的写入
     
 
     
      row = 0 
     
 
     
      col = 0 
     
 
     
      # 类型 0 empty,1 string, 2 number, 3 date, 4 boolean, 5 error
     
 
     
      ctype = 1 
      value = '单元格的值' 
     
 
     
      xf = 0 # 扩展的格式化 
     
 
     
      table.put_cell(row, col, ctype, value, xf)
     
 
     
      table.cell(0,0)  #单元格的值 
     
 
    
                  
                  
                  
                  
                            
本文介绍如何使用Python安装并配置xlrd模块来读取Excel文件,并提供了读取数据、优化数据处理的代码示例及使用技巧。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					6050
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            