第 七 章 多 元 函 数 微 分 学 与 二 重 积 分 \color{blue}{第七章 多元函数微分学与二重积分} 第七章多元函数微分学与二重积分
1.多元函数微分学是一元函数微分学的推广
注意:善于类比,区别异同
2.二重积分的性质与计算
§第七章第一节 多元函数的基本概念 \color{blue}{\text{\S 第七章第一节 多元函数的基本概念}} §第七章第一节 多元函数的基本概念
一、了解区域的概念
二、了解多元函数的概念
三、了解多元函数的极限和连续性的概念
一 、 区 域 \color{blue}{一、区域} 一、区域
1. 邻 域 \color{blue}{1.邻域} 1.邻域
点
集
U
(
P
0
,
δ
)
=
{
P
∣
∣
P
P
0
∣
<
δ
}
,
称
为
点
P
0
的
δ
邻
域
.
点集U(P_0, \delta) = \lbrace P | |PP_0| < \delta \rbrace,称为点P_0的\delta {\color{blue}{邻域}}.
点集U(P0,δ)={P∣∣PP0∣<δ},称为点P0的δ邻域.
例
如
,
在
平
面
上
,
U
(
P
0
,
δ
)
=
{
(
x
,
y
)
∣
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
<
δ
}
(
圆
邻
域
)
例如,在平面上,\\\\ U(P_0, \delta) = \lbrace (x, y) | \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta \rbrace (圆邻域)
例如,在平面上,U(P0,δ)={(x,y)∣(x−x0)2+(y−y0)2<δ}(圆邻域)
在
空
间
中
,
U
(
P
0
,
δ
)
=
{
(
x
,
y
,
z
)
∣
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
+
(
z
−
z
0
)
2
<
δ
}
(
球
邻
域
)
在空间中,\\\\ U(P_0, \delta) = \lbrace (x, y, z) | \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2} < \delta \rbrace \\\\ (球邻域)
在空间中,U(P0,δ)={(x,y,z)∣(x−x0)2+(y−y0)2+(z−z0)2<δ}(球邻域)
说
明
:
若
不
需
要
强
调
邻
域
半
径
δ
,
也
可
以
写
成
U
(
P
0
)
.
说明:若不需要强调邻域半径\delta,也可以写成U(P_0).
说明:若不需要强调邻域半径δ,也可以写成U(P0).
点
P
0
的
去
心
邻
域
记
为
U
˚
(
P
0
)
=
{
P
∣
0
<
∣
P
P
0
∣
<
δ
}
点P_0的去心邻域记为 \mathring{U}(P_0) = \lbrace P | 0 < |PP_0| < \delta \rbrace
点P0的去心邻域记为U˚(P0)={P∣0<∣PP0∣<δ}
在
讨
论
实
际
问
题
中
也
常
使
用
方
邻
域
,
方
邻
域
与
圆
邻
域
可
以
相
互
包
含
.
在讨论实际问题中也常使用方邻域,方邻域与圆邻域可以相互包含.
在讨论实际问题中也常使用方邻域,方邻域与圆邻域可以相互包含.
平
面
上
的
方
邻
域
为
U
(
P
0
,
δ
)
=
{
(
x
,
y
)
∣
∣
x
−
x
0
∣
<
δ
,
∣
y
−
y
0
∣
<
δ
}
平面上的方邻域为\\\\ U(P_0, \delta) = \lbrace (x, y) | |x -x_0| < \delta, |y - y_0| < \delta \rbrace
平面上的方邻域为U(P0,δ)={(x,y)∣∣x−x0∣<δ,∣y−y0∣<δ}
2. 区 域 \color{blue}{2.区域} 2.区域
(1) 内点、外点、边界点
设
有
点
集
E
及
一
点
P
:
设有点集E及一点P:
设有点集E及一点P:
若
存
在
点
P
的
某
个
邻
域
U
(
P
)
⊂
E
,
则
称
P
为
E
的
内
点
;
若存在点P的某个邻域U(P) \subset E,则称P为E的{\color{blue}{内点}};
若存在点P的某个邻域U(P)⊂E,则称P为E的内点;
若
存
在
点
P
的
某
个
邻
域
U
(
P
)
∩
E
=
∅
,
则
称
P
为
E
的
外
点
;
若存在点P的某个邻域U(P) \cap E = \varnothing,则称P为E的{\color{blue}{外点}};
若存在点P的某个邻域U(P)∩E=∅,则称P为E的外点;
若
点
P
的
任
一
邻
域
U
(
P
)
内
既
含
E
的
内
点
也
含
E
的
外
点
,
则
称
P
为
E
的
边
界
点
.
若点P的任一邻域U(P)内既含E的内点也含E的外点,\\\\ 则称P为E的{\color{blue}{边界点}}.
若点P的任一邻域U(P)内既含E的内点也含E的外点,则称P为E的边界点.
显
然
,
E
的
内
点
必
属
于
E
;
E
的
外
点
必
不
属
于
E
;
E
的
边
界
点
可
能
属
于
E
,
也
可
能
不
属
于
E
.
显然,E的内点必属于E;E的外点必不属于E; \\\\ E的边界点可能属于E,也可能不属于E.
显然,E的内点必属于E;E的外点必不属于E;E的边界点可能属于E,也可能不属于E.
(2)聚点
若
对
任
意
给
定
的
δ
,
点
P
的
去
心
邻
域
U
˚
(
P
,
δ
)
内
总
有
E
中
的
点
,
则
称
P
是
E
的
聚
点
.
若对任意给定的\delta,点P的去心邻域\mathring{U}(P, \delta) \\\\ 内总有E中的点,则称P是E的{\color{blue}{聚点}}.
若对任意给定的δ,点P的去心邻域U˚(P,δ)内总有E中的点,则称P是E的聚点.
聚
点
可
以
属
于
E
,
也
可
以
不
属
于
E
(
因
为
聚
点
可
以
为
E
的
边
界
点
)
聚点可以属于E,也可以不属于E(因为聚点可以为E的边界点)
聚点可以属于E,也可以不属于E(因为聚点可以为E的边界点)
所
有
聚
点
所
构
成
的
点
集
称
为
E
的
导
集
所有聚点所构成的点集称为E的{\color{blue}{导集}}
所有聚点所构成的点集称为E的导集
(3)开区域及闭区域
若
点
集
E
的
点
都
是
内
点
,
则
称
E
为
开
集
;
若点集E的点都是{\color{blue}{内点}},则称E为{\color{blue}{开集}};
若点集E的点都是内点,则称E为开集;
E
的
边
界
点
的
全
体
称
为
E
的
边
界
,
记
作
∂
E
(
∂
读
作
r
o
u
n
d
e
d
)
;
E的边界点的全体称为E的{\color{blue}{边界}},记作{\color{blue}{\partial E (\partial读作rounded)}};
E的边界点的全体称为E的边界,记作∂E(∂读作rounded);
若
点
集
E
⊃
∂
E
,
则
称
E
为
闭
集
;
若点集E \supset \partial E,则称E为{\color{blue}{闭集}};
若点集E⊃∂E,则称E为闭集;
若
集
合
D
中
任
意
两
点
都
可
以
用
一
完
全
属
于
D
的
折
线
相
连
,
则
称
D
是
连
通
的
;
若集合D中任意两点都可以用一完全属于D的折线相连,\\\\ 则称D是{\color{blue}{连通的}};
若集合D中任意两点都可以用一完全属于D的折线相连,则称D是连通的;
连
通
的
开
集
成
为
开
区
域
,
简
称
区
域
;
连通的开集成为{\color{blue}{开区域}},简称{\color{blue}{区域}};
连通的开集成为开区域,简称区域;
开
区
域
连
同
它
的
边
界
一
起
称
为
闭
区
域
.
开区域连同它的边界一起称为{\color{blue}{闭区域}}.
开区域连同它的边界一起称为闭区域.
例
如
,
在
平
面
上
例如,在平面上
例如,在平面上
{
(
x
,
y
)
∣
x
+
y
>
0
}
{
(
x
,
y
)
∣
1
<
x
2
+
y
2
<
4
}
}
开
区
域
\left. \begin{array}{l}\lbrace (x, y) | x + y > 0 \rbrace \\ \lbrace (x, y) | 1 < x^2 + y^2 < 4 \rbrace \end{array} \right \} 开区域
{(x,y)∣x+y>0}{(x,y)∣1<x2+y2<4}}开区域
{ ( x , y ) ∣ x + y ≥ 0 } { ( x , y ) ∣ 1 ≤ x 2 + y 2 ≤ 4 } } 闭 区 域 \left. \begin{array}{l}\lbrace (x, y) | x + y \geq 0 \rbrace \\ \lbrace (x, y) | 1 \leq x^2 + y^2 \leq 4 \rbrace \end{array} \right \} 闭区域 {(x,y)∣x+y≥0}{(x,y)∣1≤x2+y2≤4}}闭区域
整
个
平
面
式
最
大
的
开
区
域
,
也
是
最
大
的
闭
区
域
;
整个平面式最大的开区域,也是最大的闭区域;
整个平面式最大的开区域,也是最大的闭区域;
点
集
{
(
x
,
y
)
∣
∣
x
∣
>
1
}
是
开
集
,
但
非
区
域
.
点集\lbrace (x, y) | |x| > 1 \rbrace 是开集,但非区域.
点集{(x,y)∣∣x∣>1}是开集,但非区域.
对
于
区
域
D
,
若
存
在
正
数
K
,
使
一
切
点
P
∈
D
与
某
定
点
A
的
距
离
∣
A
P
∣
≤
K
,
则
称
D
为
有
界
域
,
否
则
称
为
无
界
域
.
对于区域D,若存在正数K,使一切点P \in D与某定点A的\\\\ 距离|AP| \leq K,则称D为{\color{blue}{有界域}},否则称为{\color{blue}{无界域}}.
对于区域D,若存在正数K,使一切点P∈D与某定点A的距离∣AP∣≤K,则称D为有界域,否则称为无界域.
3. n 维 空 间 \color{blue}{3.n维空间} 3.n维空间
n
元
有
序
数
组
(
x
1
,
x
2
,
⋯
 
,
x
n
)
的
全
体
称
为
n
维
空
间
,
记
作
R
n
,
即
R
n
=
R
×
R
×
⋯
R
=
{
(
x
1
,
x
2
,
⋯
 
,
x
n
)
∣
x
k
∈
R
,
k
=
1
,
2
,
⋯
 
,
n
}
n
维
空
间
中
的
每
一
个
元
素
(
x
1
,
x
2
,
⋯
 
,
x
n
)
称
为
空
间
中
的
一
个
点
,
数
x
k
称
为
改
点
的
第
k
个
坐
标
.
n元有序数组(x_1, x_2, \cdots, x_n)的全体称为{\color{blue}{n维空间}},\\\\ 记作{\color{blue}{R^n}},即\\\\ R^n = R \times R \times \cdots R \\\\ = \lbrace (x_1, x_2, \cdots, x_n) | x_k \in R, k = 1, 2, \cdots, n \rbrace \\\\ n维空间中的每一个元素(x_1, x_2, \cdots, x_n)称为空间\\\\ 中的一个{\color{blue}{点}},数x_k称为改点的第k个{\color{blue}{坐标}}.
n元有序数组(x1,x2,⋯,xn)的全体称为n维空间,记作Rn,即Rn=R×R×⋯R={(x1,x2,⋯,xn)∣xk∈R,k=1,2,⋯,n}n维空间中的每一个元素(x1,x2,⋯,xn)称为空间中的一个点,数xk称为改点的第k个坐标.
当
所
有
坐
标
x
k
=
0
时
,
称
该
元
素
为
R
n
中
的
零
元
,
记
作
0
当所有坐标x_k = 0时,称该元素为R^n中的{\color{blue}{零元}},记作\mathbf{0}
当所有坐标xk=0时,称该元素为Rn中的零元,记作0
二 、 多 元 函 数 的 概 念 \color{blue}{二、多元函数的概念} 二、多元函数的概念
引
例
:
圆
柱
体
的
体
积
V
=
π
r
2
h
,
{
(
r
,
h
)
∣
r
>
0
,
h
>
0
}
引例:\\\\ 圆柱体的体积\\\\ V = \pi r^2 h, \lbrace (r, h) | r > 0, h > 0 \rbrace
引例:圆柱体的体积V=πr2h,{(r,h)∣r>0,h>0}
三
角
形
面
积
的
海
伦
公
式
(
p
=
a
+
b
+
c
2
S
=
p
(
p
−
a
)
(
p
−
b
)
(
p
−
c
)
{
(
a
,
b
,
c
)
∣
a
>
0
,
b
>
0
,
c
>
0
}
三角形面积的海伦公式 (p = \dfrac{a + b + c} {2} \\\\ S = \sqrt{p(p - a)(p - b)(p - c)} \\\\ \lbrace (a, b, c ) | a > 0, b > 0, c > 0 \rbrace
三角形面积的海伦公式(p=2a+b+cS=p(p−a)(p−b)(p−c){(a,b,c)∣a>0,b>0,c>0}
定
义
1.
设
非
空
点
集
D
⊃
R
n
,
映
射
f
:
D
↦
R
称
为
定
义
在
D
上
的
n
元
函
数
,
记
作
u
=
f
(
x
1
,
x
2
,
⋯
 
,
x
n
)
或
u
=
f
(
P
)
,
P
∈
D
点
集
D
称
为
函
数
的
定
义
域
;
数
集
{
u
∣
u
=
f
(
P
)
,
P
∈
D
}
称
为
函
数
的
值
域
定义1.设非空点集D \supset R^n,映射f: D \mapsto R\\\\ 称为定义在D上的{\color{blue}{n元函数}},记作\\\\ u = f(x_1, x_2, \cdots, x_n)或u= f(P), P \in D \\\\ 点集D称为函数的{\color{blue}{定义域}};数集\lbrace u | u = f(P), P \in D \rbrace \\\\ 称为函数的{\color{blue}{值域}}
定义1.设非空点集D⊃Rn,映射f:D↦R称为定义在D上的n元函数,记作u=f(x1,x2,⋯,xn)或u=f(P),P∈D点集D称为函数的定义域;数集{u∣u=f(P),P∈D}称为函数的值域
特
别
地
,
当
n
=
2
时
,
有
二
元
函
数
z
=
f
(
x
,
y
)
,
(
x
,
y
)
∈
D
⊂
R
2
特别地,当n = 2时,有二元函数\\\\ z = f(x, y), (x, y) \in D \subset R^2
特别地,当n=2时,有二元函数z=f(x,y),(x,y)∈D⊂R2
当
n
=
3
时
,
有
三
元
函
数
u
=
f
(
x
,
y
,
z
)
,
(
x
,
y
,
z
)
∈
D
⊂
R
3
当n =3时,有三元函数\\\\ u = f(x, y, z), (x, y, z) \in D \subset R^3
当n=3时,有三元函数u=f(x,y,z),(x,y,z)∈D⊂R3
例
如
,
二
元
函
数
z
=
1
−
x
2
−
y
2
定
义
域
为
圆
域
{
(
x
,
y
)
∣
x
2
+
y
2
≤
1
}
图
形
为
中
心
在
原
点
的
上
半
球
面
.
例如,二元函数z = \sqrt{1 - x^2 - y^2} \\\\ 定义域为圆域\lbrace (x, y) | x^2 + y^2 \leq 1 \rbrace \\\\ 图形为中心在原点的上半球面.
例如,二元函数z=1−x2−y2定义域为圆域{(x,y)∣x2+y2≤1}图形为中心在原点的上半球面.
又
如
,
z
=
sin
(
x
y
)
,
(
x
,
y
)
∈
R
2
又如,z = \sin(xy), (x, y) \in R^2
又如,z=sin(xy),(x,y)∈R2
说
明
:
二
元
函
数
z
=
f
(
x
,
y
)
,
(
x
,
y
)
∈
D
的
图
形
一
般
为
空
间
曲
面
Σ
说明:二元函数z = f(x, y), (x, y) \in D的图形一般为空间曲面\Sigma
说明:二元函数z=f(x,y),(x,y)∈D的图形一般为空间曲面Σ
三
元
函
数
u
=
arcsin
(
x
2
+
y
2
+
z
2
)
的
定
义
域
为
单
位
闭
球
{
(
x
,
y
,
z
)
∣
x
2
+
y
2
+
z
2
≤
1
}
图
形
为
R
4
空
间
中
的
超
曲
面
.
三元函数u = \arcsin(x^2 + y^2 + z^2)的定义域为单位闭球\\\\ \lbrace (x, y, z) | x^2 + y^2 + z^2 \leq 1 \rbrace \\\\ 图形为R^4空间中的超曲面.
三元函数u=arcsin(x2+y2+z2)的定义域为单位闭球{(x,y,z)∣x2+y2+z2≤1}图形为R4空间中的超曲面.
三 、 二 元 函 数 的 极 限 \color{blue}{三、二元函数的极限} 三、二元函数的极限
定 义 2. 设 二 元 函 数 z = f ( x , y ) 在 点 P 0 ( x 0 , y 0 ) 的 某 一 去 心 邻 域 内 有 定 义 , P ( x , y ) 为 该 邻 域 内 任 意 一 点 , 当 P ( x , y ) 以 任 意 方 式 趋 近 于 P 0 ( x 0 , y 0 ) 时 , 函 数 f ( x , y ) 的 值 都 趋 于 一 个 确 定 的 常 数 A , 则 称 A 为 函 数 f ( x , y ) 当 点 P ( x , y ) 趋 近 于 P 0 ( x 0 , y 0 ) 时 的 极 限 . 记 作 lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A 定义2.设二元函数 z = f(x, y) 在点P_0(x_0, y_0)的某一去心邻域\\\\ 内有定义,P(x, y)为该邻域内任意一点,当P(x, y)以任意方式\\\\ 趋近于P_0(x_0, y_0)时,函数f(x, y)的值都趋于一个确定的常数A,\\\\ 则称A为函数f(x, y)当点P(x, y)趋近于P_0(x_0, y_0)时的极限.\\\\ 记作 \lim_{(x,y) \rightarrow (x_0, y_0)}{f(x, y)} = A 定义2.设二元函数z=f(x,y)在点P0(x0,y0)的某一去心邻域内有定义,P(x,y)为该邻域内任意一点,当P(x,y)以任意方式趋近于P0(x0,y0)时,函数f(x,y)的值都趋于一个确定的常数A,则称A为函数f(x,y)当点P(x,y)趋近于P0(x0,y0)时的极限.记作lim(x,y)→(x0,y0)f(x,y)=A
四 、 二 元 函 数 的 连 续 性 \color{blue}{四、二元函数的连续性} 四、二元函数的连续性
定 义 3. 设 二 元 函 数 f ( x , y ) 在 点 P 0 ( x 0 , y 0 ) 的 某 邻 域 内 有 定 义 , 如 果 lim ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) , 则 称 二 元 函 数 z = f ( x , y ) 在 点 P 0 处 连 续 , 如 果 函 数 在 D 上 各 点 处 都 连 续 , 则 称 此 函 数 在 D 上 连 续 定义3.设二元函数f(x, y)在点P_0(x_0, y_0)的某邻域内\\\\ 有定义,如果\lim_{(x, y) \rightarrow (x_0, y_0)}{f(x, y)} = f(x_0, y_0),\\\\ 则称二元函数z = f(x, y)在点P_0处连续,\\\\ 如果函数在D上各点处都连续,则称此函数在D上连续 定义3.设二元函数f(x,y)在点P0(x0,y0)的某邻域内有定义,如果lim(x,y)→(x0,y0)f(x,y)=f(x0,y0),则称二元函数z=f(x,y)在点P0处连续,如果函数在D上各点处都连续,则称此函数在D上连续
结
论
:
一
切
多
元
初
等
函
数
在
定
义
域
内
连
续
.
结论:一切多元初等函数在定义域内连续.
结论:一切多元初等函数在定义域内连续.
闭
域
上
二
元
连
续
函
数
有
与
一
元
函
数
类
似
的
如
下
性
质
:
闭域上二元连续函数有与一元函数类似的如下性质:
闭域上二元连续函数有与一元函数类似的如下性质:
定
理
:
若
f
(
P
)
在
有
界
闭
域
D
上
连
续
,
则
定理:若f(P)在有界闭域D上连续,则
定理:若f(P)在有界闭域D上连续,则
(
1
)
∃
K
>
0
,
使
∣
f
(
P
)
∣
≤
K
,
P
∈
D
;
(
有
界
性
定
理
)
(1) \exists K > 0,使|f(P)| \leq K, P \in D;(有界性定理)
(1)∃K>0,使∣f(P)∣≤K,P∈D;(有界性定理)
(
2
)
f
(
P
)
在
D
上
可
取
得
最
大
值
M
及
最
小
值
m
;
(
最
值
定
理
)
(2)f(P)在D上可取得最大值M及最小值m;(最值定理)
(2)f(P)在D上可取得最大值M及最小值m;(最值定理)
(
3
)
对
任
意
μ
∈
[
m
,
M
]
,
∃
Q
∈
D
,
使
f
(
Q
)
=
μ
;
(
介
值
定
理
)
(3)对任意\mu \in [m, M], \exists Q \in D,使f(Q) = \mu;(介值定理)
(3)对任意μ∈[m,M],∃Q∈D,使f(Q)=μ;(介值定理)
内
容
小
结
内容小结
内容小结
1.
区
域
邻
域
:
U
(
P
0
,
δ
)
,
U
˚
(
P
0
,
δ
)
区
域
:
连
通
的
开
集
R
n
空
间
1.区域\\\\ 邻域:U(P_0, \delta), \mathring{U}(P_0, \delta) \\\\ 区域:连通的开集 \\\\ R^n空间
1.区域邻域:U(P0,δ),U˚(P0,δ)区域:连通的开集Rn空间
2.
多
元
函
数
概
念
n
元
函
数
u
=
f
(
P
)
=
f
(
x
1
,
x
2
,
⋯
 
,
x
n
)
P
∈
D
⊂
R
n
2.多元函数概念\\\\ n元函数 u = f(P) = f(x_1, x_2, \cdots, x_n) \\\\ P \in D \subset R^n
2.多元函数概念n元函数u=f(P)=f(x1,x2,⋯,xn)P∈D⊂Rn
常
用
{
二
元
函
数
三
元
函
数
常用 \left \{ \begin{array}{l}二元函数 \\ 三元函数 \end{array} \right.
常用{二元函数三元函数
3.
多
元
函
数
的
极
限
3.多元函数的极限
3.多元函数的极限
lim
P
→
P
0
f
(
P
)
=
A
\lim_{P \rightarrow P_0}{f(P)} = A
limP→P0f(P)=A
讨
论
函
数
f
(
x
,
y
)
=
{
x
y
x
2
+
y
2
,
x
2
+
y
2
=
̸
0
0
,
x
2
+
y
2
=
0
讨论函数f(x, y) = \left \{ \begin{array}{l} \dfrac{xy}{x^2 + y^2}, \quad x^2 + y^2 =\not 0 \\ 0, \qquad x^2 + y^2 = 0 \end{array} \right.
讨论函数f(x,y)={x2+y2xy,x2+y2≠00,x2+y2=0
在
P
0
(
0
,
0
)
处
的
极
限
是
否
存
在
?
在P_0(0, 0)处的极限是否存在?
在P0(0,0)处的极限是否存在?
沿
x
轴
(
y
=
0
)
lim
x
→
0
,
y
=
0
f
(
x
,
y
)
=
0
沿x轴(y = 0) \lim_{x \rightarrow 0 , y = 0}{f(x, y)} = 0
沿x轴(y=0)limx→0,y=0f(x,y)=0
沿
y
轴
(
x
=
0
)
lim
x
=
0
,
y
→
0
f
(
x
,
y
)
=
0
沿y轴(x = 0) \lim_{x = 0, y \rightarrow 0}{f(x, y)} = 0
沿y轴(x=0)limx=0,y→0f(x,y)=0
沿 y = k x , ( k = ̸ 0 ) lim ( x , y ) → ( 0 , 0 ) f ( x , y ) = lim ( x , y ) → ( 0 , 0 ) x k x x 2 + k 2 x 2 = k 1 + k 2 对 于 不 同 的 k 值 , 极 限 值 不 同 , f ( x , y ) 在 P ( 0 , 0 ) 点 极 限 不 存 在 沿y = kx, (k =\not 0) \\\\ \lim_{(x, y) \rightarrow (0, 0)}{f(x, y)} \\\\ = \lim_{(x, y) \rightarrow (0, 0)}{\dfrac{xkx}{x^2 + k^2x^2}} = \dfrac{k}{1 + k^2}\\\\ 对于不同的k值,极限值不同,f(x, y)在P(0, 0)点极限不存在 沿y=kx,(k≠0)lim(x,y)→(0,0)f(x,y)=lim(x,y)→(0,0)x2+k2x2xkx=1+k2k对于不同的k值,极限值不同,f(x,y)在P(0,0)点极限不存在
4.
多
元
函
数
的
连
续
性
4.多元函数的连续性
4.多元函数的连续性
1
)
函
数
f
(
P
)
在
P
0
连
续
⟺
lim
P
→
P
0
f
(
P
)
=
f
(
P
0
)
1)函数f(P)在P_0连续 \Longleftrightarrow \lim_{P \rightarrow P_0}{f(P)} = f(P_0)
1)函数f(P)在P0连续⟺limP→P0f(P)=f(P0)
2
)
闭
域
上
的
多
元
连
续
函
数
的
性
质
:
有
界
定
里
;
最
值
定
理
;
介
值
定
理
2)闭域上的多元连续函数的性质:\\\\ 有界定里; 最值定理; 介值定理
2)闭域上的多元连续函数的性质:有界定里;最值定理;介值定理
3
)
一
切
多
元
初
等
函
数
在
定
义
域
内
连
续
3)一切多元初等函数在定义域内连续
3)一切多元初等函数在定义域内连续