泛函分析 02.02 赋范空间-完备的赋范空间

§2.2 

, 
. 
 
线,. 
线.. 
,, 
( 
). 
. 

2.2.1 

2.2.1C[a,b].[a,b], 
,线.: 
x=max atb |x(t)| 
C[a,b]. 
(1.1.51.3.191.4.11) 
C(Ω),ΩR n ,. 
:C(Ω)Ω, 
x=max tΩ |x(t)| 
C(Ω),. 

2.2.2X[a,b],X 
x 1 = b a |x(t)|dt(2.2.1) 
线, 
 1 ,(X, 1 ). 
 
d(x,y)=xy 1 = b a |x(t)y(t)|dt(2.2.2) 
((1.4.14)). 
(X, 1 ). 
[a,b]线,: 
x 2 =[ b a |x(t)| 2 dt] 12  (2.2.3) 
. 
:,,. 

2.2.2 

,, 
(). 
. 
,. 

2.2.3. 

. 
:X,,X ˜ . 
(:X ˜ ) 
x ˜ ,y ˜ X ˜ ,x ˜ ={x n },y ˜ ={y n }XCauchy, 
X ˜ 线 
x ˜ +y ˜ ={x n +y n },αx ˜ ={αx n }(2.2.4) 
x ˜ =lim n x n (2.2.5) 
X ˜ Banach, 
XX ˜ .X. 
, 
,使Cauchy. 
:X[a,b],X 
x 1 = b a |x(t)|dt 
(X, 1 )Banach,. 
: 
(X ˜ , 1 )={[a,b]} 
={x(t)| b a |x(t)|dt<} 
C[a,b], 
使Cauchy. 
:线,(2.2.3),? 

2.2.3L p  

: 
(1)L p .Ho ¨ lderMinkowski. 
(2)L p . 
(3)p=. 
(4)L p l p ,Ho ¨ lderMinkowski. 

L p [a,b](1p<): 
2.2.4f(x)[a,b],1p<, 
|f| p [a,b],fp.[a,b]p 
,L p [a,b],L p . 
L p [a,b]={x(t)| b a |x(t)| p dt<}(2.2.6) 
L p [a,b],: 
x=( b a |x(t)| p dt) 1p  (2.2.7) 
L p [a,b],4: 
(i)x0; 
(ii)x=0x(t)=0(a.e); 
(iii)αx=|α|x, 
( b a |αx(t)| p dt) 1p  =|α|( b a |x(t)| p dt) 1p   
(iv)x+yx+y, 
( b a |x(t)+y(t)| p dt) 1p  ( b a |x(t)| p dt) 1p  +( b a |y(t)| p dt) 1p   
(i),(ii),(iii),(iv),Ho ¨ lderMinkowski. 

2.2.5p,q,1p +1q =1(p,q), 
a,b, 
|ab||a| p p +|b| q q (2.2.8) 
:(1)b=0. 
(2)b0, 
ϕ(t)=t 1p  1p t 
t=1,ϕ(t) 
ϕ(1)=11p =1q  
t=|a| p |b| q   
|a||b| qp   1p |a| p |b| q  1q , 
|b| q ,qqp =1, 
|ab||a| p p +|b| q q  

Ho ¨ lderMinkowski. 
2.2.6(Ho ¨ lder)ELebesgue, 
x(t),y(t)E,pq, 
 E |x(t)y(t)|dt( E |x(t) p dt) 1p  ( E |y(t)| q dt) 1q  (2.2.9) 
:A=( E |x(t)| p dt) 1p  ,B=( E |y(t)| q dt) 1q   
(1)A,B0,(2.2.9) 
 E |x(t)y(t)|dt( E |x(t)| p dt) 1p  ( E |y(t)| q dt) 1q   
(2)0<A<,0<B<. 
tE,(2.2.8): 
|x(t)y(t)|AB 1p |x(t)A | p +1q |y(t)B | q  
 
1AB  E |x(t)y(t)|dt 
A p p  E |x(t)| p dt+B q q  E |y(t)| q dt 
=1p +1q =1 
 
 E |x(t)y(t)|dt 
AB=( E |x(t)| p dt) 1p  ( E |y(t)| q dt) 1q   
:p=2,: 
 E |x(t)y(t)|dt 
( E |x(t)| 2 dt) 12  ( E |y(t)| 2 dt) 12  (2.2.10) 

MinkowskiL p (). 
2.2.7(Minkowski)ELebesgue,x(t),y(t),1p<, 
( E |x(t)+y(t)| p dt) 1p   
( E |x(t)| p dt) 1p  +( E |y(t)| p dt) 1p  (2.2.11) 
:p=1,.p>1, 
 E |x(t)+y(t)| p dt=0,. 
p>1 E |x(t)+y(t)| p dt>0. 
 E |x(t)+y(t)| p dt= E |x(t)+y(t)| p1 |x(t)+y(t)|dt 
 E |x(t)||x(t)+y(t)| p1 dt+ E |y(t)||x(t)+y(t)| p1 dt 
Ho ¨ lder(2.2.9),qp, 
 E |x(t)||x(t)+y(t)| p1 dt+ E |y(t)||x(t)+y(t)| p1 dt 
( E |x(t)| p dt) 1p  ( E |x(t)+y(t)| q(p1) dt) 1q   
+( E |y(t)| p dt) 1p  ( E |x(t)+y(t)| q(p1) dt) 1q   
1p +1q =1,q(p1)=p, 
 E |x(t)+y(t)| p dt 
( E |x(t)+y(t)| p dt) 1q  (( E |x(t)| p dt) 1p  +( E |y(t)| p dt) 1p  ) 
 
( E |x(t)+y(t)| p dt) 1p  ( E |x(t)| p dt) 1p  +( E |y(t)| p dt) 1p   
1:Minkowski,L p [a,b](2.2.7) 
,(L p [a,b],). 
2:L 2 [a,b], 
(1.1.10),: 
d(x,y)=( b a |x(t)y(t)| 2 dt) 12   
,Em(E)<+, 
L p (E)={x(t)| E |x(t)| p dt<}(2.2.12) 
: 
x=( E |x(t)| p dt) 1p  (2.2.13) 
Minkowski,L p (E). 

2.2.8L p (E)(1p<)Banach. 

:Cauchy. 
Cauchy, 
Cauchy. 
(III.1): 
(1)Cauchy{x n (t)}{x n k  (t)}, 
lim k x n k  (t)=x 0 (t); 
:x n k+1  x n k  <12 k   
,,. 
(2)x 0 (t)L p ; 
(3){x n (t)}L p x 0 (t). 

2.2.9L p [a,b]. 
:L p [a,b]. 
: 
L p [a,b]. 
(1)ε>0,xL p [a,b],y(t),使 
x(t)y(t)<ε 
(2)p(t),使 
y(t)p(t)<ε 
 
x(t)p(t)<2ε 
(3)L p [a,b], 
L p [a,b]. 
:(1)i)x(t)L p , 
x n (t)={x(t),|x(t)|n,0,|x(t)|>n (n=1,2,)(2.2.14) 
,x n (t)L p |x n (t)|n 
ii) 
n p m{t||x(t)|>n} {t||x(t)|>n} |x(t)| p dt 
< b a |x(t)| p dt< 
m{t||x(t)|>n}0(n) 
iii), 
xx n  p = {t||x(t)|>n} |x(t)| p dt0(n) 
ε,N,nN,x n x<ε 
(2)x N (t),,y(t), 
A, 
x N (t)=y(t),|y(t)|N, 
mA<(ε2N ) p . 
x N (t)y(t)=( A |x N (t)y(t)| p dt) 1p   
( A (|x N (t)|+|y(t)|) p dt) 1p   
( A (2N) p dt) 1p   
=2N(mA) 1p  <ε 
(3)y(t),Weierstrass,y(t) 
p(t),: 
|y(t)p(t)|<ε(ba) 1p   (t[a,b]) 
 
y(t)p(t)=( b a |y(t)p(t)| p dt) 1p  <ε 
 
xpxx N +x N y+yp(t)<3ε 
:[a,b]L p [a,b],L p . 
L p [a,b],: 
L p [a,b]C[a,b]L p . 

2.2.4L   

p=. 
2.2.10E,x(t)E.EE 0 E, 
mE 0 =0,x(t)EE 0 ,x(t). 

2.2.11L  (E). 
L  (E)E, 
x=inf mE 0 =0,E 0 E sup EE 0  |x(t)|(2.2.15) 
1,E 0 ,使 
x=sup EE 0  |x(t)| 
,1n ,E n E,mE n =0, 
sup EE n  |x(t)|<x+1n  
E 0 = n=1  E n ,E 0 E,mE 0 =0,n, 
xsup EE 0  |x(t)|sup EE n  |x(t)|x+1n  
x=sup EE 0  |x(t)|. 
x(t)EE 0 (). 
2xx(t), 
x=esssup E |x(t)|(2.2.16) 
3xX. 
4L  (E). 
x n  d x(n),x n x0(n), 
{x n (t)},x n (t)x(t). 

2.2.12L  (E)Banach. 

2.2.13mE<,1p 2 <p 1 <, 
L  (E)L p 1  (E)L p 2  (E)(2.2.17) 
:(i)x(t)L  ,x(t),mE<, 
x(t)L p 1  (E 1 ),L  (E)L p 1  (E). 
(ii)xL p 1  (E),B={tE||x(t)|1}. 
 E |x(t)| p 2  dt= B |x(t)| p 2  dt+ EB |x(t)| p 2  dt 
mB+ EB |x(t)| p 1  dt 
x(t)L p 2  (E). 
,x(t)L  (E),mE<, 
x p x  . 
lim p ( E |x(t)| p dt) 1p  =x  (2.2.18) 
L  (E)L p (E). 

2.2.5l p  

l p (1p<)p, 
l p ={x={ξ k }| k=1  |ξ k | p <}(2.2.19) 
: 
Ho ¨ lderMinkowski. 

2.2.14{ξ k }l p {η k }l q (p,q1p +1q =1), 
Ho ¨ lder: 
 k=1  |ξ k η k |( k=1  |ξ k | p ) 1p  ( k=1  |η k | q ) 1q   
Minkowski: 
( k=1  |ξ k +η k | p ) 1p  ( k=1  |ξ k | p ) 1p  +( k=1  |η k | p ) 1p   
l p (1p<)l  . 
,L p (E), 
L  (E)l p l  . 

2.2.15线l p (1p<) 
x p =( k=1  |ξ k | p ) 1p  (2.2.20) 
l p . 

2.2.16l  , 
l  ={x={ξ k }|{ξ k }}(2.2.21) 
 
x  =sup k |ξ k |(2.2.22) 
l  . 
:l p (1p<)Banach. 
l  Banach. 
,p=2,L 2 : 
x 2 =( b a |x(t)| 2 dt) 12  (2.2.23) 
x 2 .: 
d 2 (x,y)={ b a |x(t)y(t)| 2 dt} 12  (2.2.24) 
L 2 (). 
,l 2 ,: 
x 2 =( k=1  |ξ k | 2 ) 12  (2.2.25) 
l 2 (). 
,:. 

  • 6
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值