PyTorch学习笔记(二)划分数据集

本文介绍了在PyTorch中如何处理计算机视觉任务的数据集,包括将图像按标签分类放入不同子目录以及如何划分训练、验证和测试集。通过编写categorise.py和split.py脚本,实现了数据的正确组织和划分,确保符合PyTorch的读取需求。
摘要由CSDN通过智能技术生成

Environment

  • OS: macOS Mojave
  • Python version: 3.7
  • PyTorch version: 1.4.0
  • IDE: PyCharm


0. 写在前面

对于计算机视觉深度学习任务,对数据的处理包括

  1. 划分数据集,将数据集划分为划分训练集、验证集、测试集;
  2. 预处理,对图像进行数据增强和标准化;
  3. 读取,读取一个 batch 的数据输入模型。

PyTorch 读取数据进行训练时,要求数据按照特定的目录结构放好,所以划分数据集就是要将数据整理为特定的目录格式。

1. 将图像按标签分类放入不同子目录

到手的训练图像数据集有时候并未是方便 PyTorch 读取的目录格式。以 TinyMind人民币面值识别 任务的训练集为例,共有 39620 张图片,train_face_value_label.csv 中为每张图片对应的标签信息

├── train
│   ├── 39620 images.jpeg
└── train_face_value_label.csv

编写一个 categorise.py 按类别存放到不同目录中,形成以下目录结构

├── categorise.py
├── train
│   ├── 0.1
│	│	└── 4233 images.jpg
│	├── 0.2
│	│	└── 4373 images.jpg
│	├── 0.5
│	│	└── 4407 images.jpg
│	├── 1.0
│	│	└── 4424 images.jpg
│	├── 2.0
│	│	└── 4411 images.jpg
│	├── 5.0
│	│	└── 4413 images.jpg
│	├── 10.0
│	│	└── 4283 images.jpg
│	├── 50.0
│	│	└── 4408 images.jpg
│	├── 100.0
│	│	└── 4668 images.jpg
└── train_face_value_label.csv

import os
import time
import shutil
import pandas as pd

label_path = os.path.join(os.curdir, 'train_face_value_label.csv')
labels = pd.read_csv(label_path)

# move each image to the specified-class dir
since = time.time()
data_dir = os.path.join(os.curdir
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值