组合游戏(分石子,nim游戏,sg)

一、最近在学习组合游戏方面的知识,我们可以考虑这类组合游戏:
(1)两个人轮流操作
(2)游戏状态有限,总能走到最终状态,且都不会出现以前的状态。即给定初始状态,游戏的胜负是可以预见的。
(3)规定谁不能操作谁输。

对于这种游戏,我们把他放在一个有向无环图上来分西,我们可以得到以下规则
规则1:一个状态是必胜状态当且仅当他的后继中有一个状态是必败状态
规则2:一个状态是必败状态当且仅当他的后继中所有状态是必胜状态
知道了这个,我们就可以来解决一些简单的博弈问题,虽然这种解法很暴力.;.........
例1: 分花生游戏 (博弈论)
题目链接:https://www.oj.swust.edu.cn/problem/show/1004

题意:

Description
4月6日,我校Nicholas代表队做火车前往湖北武汉大学参加“百度杯”第二届华中北区ACM程序设计邀请赛,在火车上老师和队员们觉得要找点事情来做,于是小谭(谭老师)就抓了一大包花生出来,让大家玩一个分花生的游戏,游戏规则如下:
桌子上放着两堆花生,Player1和Player2轮流对这些花生进行操作。在每一次操作中,操作者需要吃掉其中一堆花生,并且把另一堆花生分成两堆(可以不相等)留给对方操作。游戏如此进行下去,花生数会越来越少,最后必将出现这样一种情况:某人吃掉一堆花生后发现另一堆里只剩一颗花生不能再分了。游戏规定此时该操作者吃掉最后这一颗花生从而取胜。
起初Nicholas的队员轮流挑战小谭,可是全部都很遗憾的落败了,旁边的杨老师实在看不下去了便提醒队员们这个游戏是不公平的,对于任意一种初始状态,总有一方有必胜策略。所谓有必胜策略是指,无论对方如何操作,自己总有办法取胜。
现在将进行10次游戏,每一次游戏中总是小谭先进行操作。现在你的任务就是帮助Nicholas的队员们设计一个程序来判断每一次游戏中Nicholas的队员是否有必胜策略。(假设小谭和队员们都是用最优的方式在进行操作)。
Input
输入数据一共10行,每行有两个用空格隔开的正整数m,n( 0 < m,n < 100000 ),表示一次游戏开始时桌子上两堆糖果分别有多少个。
Output
输出十行字符串。这些字符串只能是“Yes”或“No”,它们表示对应的十行输入数据Nicholas的队员是否有必胜策略。请注意大小写。


  • Sample Input
  • Raw
    1 1
    1 2
    1 3
    1 4
    1 5
    2 1
    2 2
    2 3
    2 4
    2 5
    Raw
    No
    No
    No
    No
    No
    No
    Yes
    Yes
    No
    No

    我们由题意可以根据题意来处理很小的时候,然后根据上面的规则来不断的推算结果。由于题意我们可以是选择一堆吃点,然后把另一堆分成两份。我们可以定义一个状态sum即我们可以把值为sum的这个分成两堆的情况。即:对于存在将sum分成两个子状态a,b。a,b的结果均为负。则值为sum的状态就是胜。若没有出现这种情况,则sum的状态为负。对于为负的情况因为无论怎么分堆,他的对手总有方法获胜。由于n,m<100000,我们可以预处理处sum的值。然后再判断其他的值。当然当n很大时我们可以先打印一般的值,然后找规律!!!!

  • AC

  • #include <algorithm>
    #include <string>
    #include <iostream>
    #include <string.h>
    #include<stdio.h>
    #include<cmath>
    #include<vector>
    #include<set>
    #include<map>
    using namespace std;
    #define ll __int64
    #define maxn 100008
    int sum[maxn];
    int nans[maxn];
    int cnt=0;
    int main()
    {
       int n,m;
       //freopen("in.txt","r",stdin);
       sum[1]=1;
       for(int i=2;i<100000;i++)
       {
            if(!sum[i])
            {
                nans[cnt++]=i;
                for(int k=0;k<cnt;k++)
                {
                    if(nans[k]+i>=100000) break;
                    sum[nans[k]+i]=1;
                }
            }
    
       }
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            if(sum[n]==1||sum[m]==1)
            {
                puts("No");
            }
            else puts("Yes");
        }
    }
    

    例2:    分花生游戏系列之2

    题目链接:

    https://www.oj.swust.edu.cn/problem/show/1022

    Description

    我们平台上的1004题大家都看了吗,小谭觉得这么经典的问题不能只出一道吧,所以小谭决定再出一道这样的题目,不过考虑到大家对这些题目的经验有限,所以小谭找的这个题目还是比较简单的.
        游戏规则:桌上有一堆花生,2个游戏者轮流在这堆花生中拿走一些花生,每次至少拿一颗,最多拿5颗,最后拿走最后一颗花生的游戏者为胜利者.和1004中的题目一样,对于每种初始状态都有一个最优方案能让其中一方有必胜策略.现在小谭找杨老师一起玩这个游戏,由于杨老师对这些游戏很有经验,所以他很快就判断出了这个游戏的必胜策略.现在你的任务就是设计个程序来判断对于给定的初始状态,哪位老师会取得游戏的最后胜利.我们假设每次游戏都是小谭先操作,并且2个老师都按照最优策略在一直进行操作.

    Input
    第一行输入一个正整数T,表示游戏的次数.
    以下T行,每一行输入一个正整数N,表示游戏初始状态桌上的花生数.( 0 < N < 2,000,000,000 ).

    Output
    输出包括T行,如果小谭胜利输出"Mr Tan win.",否则输出"Mr Yang win.".


    输出包括T行,如果小谭胜利输出"Mr Tan win.",否则输出"Mr Yang win.".
    3
    100
    55
    18

  • Sample Output
  • Raw
    Mr Tan win.
    Mr Tan win.
    Mr Yang win.

    解法:我们依旧可以由上面那个规则来推倒一下,然后我们可以发现当n%(5+1)==0时Mr Yang win.。其余状态为Mr Tan win.

    总结:对于一堆石子,如果我们可以一次拿走1~k个,拿走最后一个的获胜。当这堆石子的个数为(k+1)的整数倍时,先手输。先手赢。

    证明:当石子个小于k时,先手胜。当时子个数等于k+1时,我论先手怎么取,情况均为负。当石子个数k+1<x<=2*k+1,先手可以将这个局势装换成k+1,则先手胜。

    当石子数为2*k+2时,由于前面的k种状态均为负,所以所先手必败。然后依次递推,我们就可以证明当x%(k+1)==0是先手必败。

    AC:

    #include <algorithm>
    #include <string>
    #include <iostream>
    #include <string.h>
    #include<stdio.h>
    #include<cmath>
    #include<vector>
    #include<set>
    #include<map>
    using namespace std;
    #define ll long long int
    #define maxn 100008
    int sum[maxn];
    int nans[maxn];
    int cnt=0;
    int main()
    {
      ll m,t;
      scanf("%lld",&t);
      while(t--)
      {
          scanf("%lld",&m);
          if(m%6==0) puts("Mr Yang win.");
          else puts("Mr Tan win.");
    
      }
    }
    


    例3: 取石子游戏 (经典博弈论)
    题目链接:https://www.oj.swust.edu.cn/problem/show/1122
    Description
    有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者
    

    Input
    输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

    Output
    输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。


  • Sample Input
  • Raw
    2 1
    8 4
    4 7

  • Sample Output
  • Raw
    0
    1
    0

    解法:我们依然可以按照最开始的两个规则由最开始的状态不断递推找规律。当我们找到必败点(0,0)(1,2)(3,5)(4,7)(6,10)(8,13),然后发现这其实是找到一个规律类似于黄金分割,一个威佐夫博奕的模型:

    威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

    这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
    可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。
    奇异局势有如下性质:
    1。任何自然数都包含在一个且仅有一个奇异局势中。
    由于ak是未在前面出现过的最小自然数,所以有a[k] > a[k-1] ,而 bk= a[k] + k > a[k-1] + k > a[k-1] + k - 1 = b[k-1] > a[k-1] 。所以性质1成立。
    2。任意操作都可将奇异局势变为非奇异局势。
    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
    3。采用适当的方法,可以将非奇异局势变为奇异局势。
    假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk 那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk 则同时从两堆中拿走a-a[b-a] 个物体变为奇异局势( a[b-a], b-a+a[b-a]);如果a > ak ,b= ak + k 则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k)从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k)从第二堆里面拿走 b - aj 即可。


    两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
    那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
    ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...n 方括号表示取整函数)
    奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618...因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,b = aj + j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

    AC:
    #include <algorithm>
    #include <string>
    #include <iostream>
    #include <string.h>
    #include<stdio.h>
    #include<cmath>
    #include<vector>
    #include<set>
    #include<map>
    using namespace std;
    #define ll __int64
    const int maxn =1e6+8;
    #define ll long long int
    
    int main()
    {
        int t;
        //freopen("in.txt","r",stdin);
        int  a,b;
        while(scanf("%d%d",&a,&b)!=EOF)
        {
            int x,y;
            y=max(a,b);
            x=min(a,b);
            int z=y-x;
            int w=(int)(z*(1.0+sqrt(5))/2);
            if(w==x) puts("0");
            else puts("1");
        }
    
    
    }
    

    二、NIM游戏和SG定理

    Nim游戏的定义是这样的:有若干堆石子,每堆石子的数量都是有限的,合法的移动是“选择一堆石子并拿走若干颗(不能不拿)”,如果轮到某个人时所有的石子堆都已经被拿空了,则判负(因为他此刻没有任何合法的移动)。
    Nim和:状态中,所有石子的异或和。当Nim和为0时,先手必败。反之先手。( 证明
    SG函数:对于任意状态的x,定义SG(x)=mex(S),S是x的后继中函数值得集合,mex表示不再S内的最小非负数。
  • 题意:n个格子排成一行,在这个格子里面有一些字符x,两个游戏轮流操作,再空格里面放x。如果此时出现3个连续的x,则该游戏者获胜。你的任务是判断先手是否有必胜策略。如果有请输出所有比赛策略。
  • 解法:对于这种游戏,当x的格子旁边的相邻两个格子若存在x则此时先手必胜。然后通过这局面x的分布,它将这个局面分成了很多片段。我们用g(x)表示连续x个空格所对应的SG函数值,则可以递推出g(x)=mex(g(x-3),g(x-4),g(x-5),g(1)^g(x-6),g(2)^g(x-7).......)即将x从最边上到最后所能放的所用位置的。边界g(0)=0,g(1)=g(2)=g(3)=1。我们就可以由SG定理判断出该局面的胜负状态。对于必胜策略,我们只需要枚举出所有方下x后,SG值为0的方法。(参加入门经典训练指南p139)
  • AC
  • #include <algorithm>
    #include <string>
    #include <iostream>
    #include <string.h>
    #include<stdio.h>
    #include<cmath>
    #include<vector>
    #include<set>
    #include<map>
    using namespace std;
    #define ll __int64
    const int maxn =300;
    #define ll long long int
    int sg[maxn];
    int len;
    char s[maxn];
    int sg_init(int x)//递推处SG函数值
    {
        if(sg[x]!=-1) return sg[x];
        int vis[maxn];
        memset(vis,0,sizeof(vis));
        for(int i=3;i<=x&&i<=5;i++)
        {
            vis[sg_init(x-i)]=1;
        }
        for(int i=1;i+5<=x;i++)
        {
            vis[sg_init(i)^sg_init(x-i-5)]=1;
        }
         for(int i=0;;i++)
         {
             if(!vis[i])
             {
                 return sg[x]=i;
             }
         }
    }
    int check(int xx)//判断若在xx位置放置“X”字符时,后继局面的胜负状态
    {
        if(s[xx]=='X') return 1;
        s[xx]='X';
        for(int i=0;i+2<len;i++)
            if(s[i]=='X'&&s[i+1]=='X'&&s[i+2]=='X')
            {
                s[xx]='.'; return 0;
            }
    
        for(int i=0;i+2<len;i++)
            if(s[i]=='X'&&s[i+2]=='X')
            {
                s[xx]='.';return 1;
            }
        for(int i=0;i+1<len;i++)
            if(s[i]=='X'&&s[i+1]=='X')
            {
                s[xx]='.'; return 1;
            }
    
        int st=0,sg1=0;//st为两个x间有多少个空格
        for(int i=0;i<len;i++)
        {
            if(s[i]=='X')
            {
              if(st==i)
              {
                  if(st>2)  sg1^=sg_init(i-2);//处理开头为空格的情况,禁区只有2个空格
              }
              else if(st>4)
              {
                   sg1^=sg_init(st-4);
              }
              st=0;
            }
            else st++;
        }
        if(st>2)
        sg1^=sg_init(st-2);//处理结尾的情况
        s[xx]='.';
        if(sg1==0) return 0;//根据nim和判断局面
        else return 1;
    }
    int main()
    {
        int t;
        //freopen("in.txt","r",stdin);
        memset(sg,-1,sizeof sg);
        vector <int>ans;
        sg[0]=0;
        sg[1]=sg[2]=sg[3]=1;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%s",s);
            len=strlen(s);
            //cout<<"len:"<<len<<endl;
            ans.clear();
            for(int i=0;i<len;i++)
            {
                if(!check(i))//后继局面SG为0是,则先手胜。规则1:一个状态是必胜状态当且仅当他的后继中有一个状态是必败状态
                {
                    ans.push_back(i+1);
                }
            }
            if(ans.size()==0)
            {
                puts("LOSING\n");
            }
            else
            {
                puts("WINNING");
                for(int i=0;i<ans.size();i++)
                {
                    if(i!=0)  printf(" ") ;
                     printf("%d",ans[i]);
                }
                printf("\n");
            }
        }
       /* for(int i=0;i<=50;i++)
        {
            cout<<i<<":"<<sg[i]<<endl;
        }*/
        return 0;
    

















  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值