1. PCAM设计方法学
设计并行算法的四个阶段:
划分(Partitioning):分解成小的任务,开拓并发性
通讯(Communication):确定诸任务间的数据交换,监测划分的合理性;
组合(Agglomeration):依据任务的局部性,组合成更大的任务;
映射(Mapping):将每个任务分配到处理器上,提高算法的性能。
2. 划分
充分开拓算法的并发性和可扩放性;
先进行数据分解(称域分解),再进行计算功能的分解(称功能分解);
使数据集和计算集互不相交;
划分阶段忽略处理器数目和目标机器的体系结构;
主要分为两类划分:
Ø 域分解(domaindecomposition)
Ø 功能分解(functionaldecomposition)
域分解:
划分的对象是数据,可以是算法的输入数据、中间处理数据和输出数据;
将数据分解成大致相等的小数据片;
划分时考虑数据上的相应操作;
如果一个任务需要别的任务中的数据,则会产生任务间的通讯;
功能分解:
划分的对象是计算,将计算划分为不同的任务,其出发点不同于域分解;
划分后,研究不同任务所需的数据。如果这些数据不相交的,则划分是成功的;如果数据有相当的重叠,意味着要重新进行域分解和功能分解;
功能分解是一种更深层次的分解。
划分依据:
划分是否具有灵活性?
划分是否避免了冗余计算和存储?
划分任务尺寸是否大致相当?
任务数与问题尺寸是否成比例?
功能分解是一种更深层次的分解,是否合理?
3. 通讯
通讯是PCAM设计过程的重要阶段;
划分产生的诸任务,一般不能完全独立执行,需要在任务间进行数据交流;从而产生了通讯;
功能分解确定了诸任务之间的数据流;
诸任务是并发执行的,通讯则限制了这种并发性;
局部/全局通讯
结构化/非结构化通讯
结构化通讯:存在一个相同的通讯模式
非结构化通讯:不存在一个相同的通讯模式
静态/动态通讯
同步/异步通讯
通讯判据:
所有任务是否执行大致相当的通讯?
是否尽可能的局部通讯?
通讯操作是否能并行执行?
同步任务的计算能否并行执行?
4. 组合
组合是由抽象到具体的过程,是将组合的任务能在一类并行机上有效的执行;
合并小尺寸任务,减少任务数。如果任务数恰好等于处理器数,则也完成了映射过程;
通过增加任务的粒度和重复计算,可以减少通讯成本;
保持映射和扩展的灵活性,降低软件工程成本;
表面容积效应:
通讯量与任务子集的表面成正比,计算量与任务子集的体积成正比;
增加重复计算有可能减少通讯量;
重复计算:
重复计算减少通讯量,但增加了计算量,应保持恰当的平衡;
重复计算的目标应减少算法的总运算时间;
组合判据:
增加粒度是否减少了通讯成本?
重复计算是否已权衡了其得益?
是否保持了灵活性和可扩放性?
组合的任务数是否与问题尺寸成比例?
是否保持了类似的计算和通讯?
有没有减少并行执行的机会?
5. 映射
每个任务要映射到具体的处理器,定位到运行机器上;
任务数大于处理器数时,存在负载平衡和任务调度问题;
映射的目标:减少算法的执行时间
并发的任务à 不同的处理器
任务之间存在高通讯的à 同一处理器
映射实际是一种权衡,属于NP完全问题;
负载平衡算法:
静态的:事先确定;
概率的:随机确定;
动态的:执行期间动态负载;
基于域分解的:
Ø 递归对剖
Ø 局部算法
Ø 概率方法
Ø 循环映射
任务调度算法:
任务放在集中的或分散的任务池中,使用任务调度算法将池中的任务分配给特定的处理器。下面是两种常用调度模式:
经理/雇员模式
非集中模式
映射判据:
采用集中式负载平衡方案,是否存在通讯瓶颈?
采用动态负载平衡方案,调度策略的成本如何?