本题需要分成两种情况讨论(最长回文子串含奇数个元素/最长回文子串含偶数个元素)。
找出最长奇数子串:
利用一层循环动态提供回文子串的中心位置i,嵌套一层循环提供子串左右延伸长度j,通过s[i-j]与s[i+j]的依次比较判断子串是否回文,并将最长的奇数回文子串中心位置保存在p中,将延伸长度保存在l中。
找出最长偶数子串:
利用一层循环动态提供回文子串的中心位置i和i+1(偶数子串中心位置有两个),嵌套一层循环提供子串左右延伸长度j,通过s[i-j]与s[i+1+j]的依次比较判断子串是否回文,并将最长的偶数回文子串中心位置保存在P中,将延伸长度保存在L中。
返回最长子串:
奇数子串的长度为:2l+1;起始位置为:p-l
偶数子串的长度为:2L+2;起始位置为:P-L
比较长度之后,返回最长回文子串。
代码优化:
以上方法分类讨论奇偶情况解决了问题,但仍可以通过一些技巧让偶数化为奇数以达到简化代码的目的。
例如,我们在每两个字符之间插入一个给定字符串中不可能出现的符号(如 # ),这样取到任意两个字母位置之间的子串,都是奇数个元素(包括#)。运算出最长回文子串后,返回子串时注意删除子串中的#。
代码实现(c++):
class Solution
{
public:
string longestPalindrome(string s)
{
int i,j,p=0,l=0,n=s.size();
for(i=0;i<n;i++)
{
for(j=1;j<=min(i,n-i);j++)
if(s[i-j]!=s[i+j])
break;
if(l<j)
{
l=j;
p=i;
}
}
l--;
int P=0,L=0;
for(i=0;i<n;i++)
{
for(j=0;j<=min(i,n-i);j++)
if(s[i-j]!=s[i+j+1])
break;
if(L<j)
{
L=j;
P=i;
}
}
L--;
if(2*l+1>2*L+2) return s.substr(p-l,2*l+1);
else return s.substr(P-L,2*L+2);
}
};