自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(76)
  • 资源 (7)
  • 论坛 (1)
  • 收藏
  • 关注

原创 用google colab进行yolov5模型训练,免费使用GPU资源

进入google云端硬盘:https://www.google.com/intl/zh-CN/drive/视频教程:https://www.bilibili.com/video/BV1YK4y1E7zd?from=search&seid=14280298791959725378遇到的问题:1.在新建里面没有找到Google Colaboratary谷歌云盘中新建选项中不存在Colaboratory的问题2.更新一个库,视频里面有!pip install -U pyyaml3.一些图

2021-02-01 23:37:04 122 7

原创 RuntimeError: Output 0 of a function created in no_grad mode is a view and is being modified inplace

问题:在使用google colab训练yolov5模型时,遇到这个报错。在google里面找到个帖子:https://discuss.pytorch.org/t/leaf-variable-was-used-in-an-inplace-operation/308意思就是:代码操作不规范解决方法:在报错的代码文件中,找到报错的语句,在前面加一个while语句然后就ok了...

2021-02-01 22:48:37 60 3

原创 Jupyter Notebook——Windows平台上中如何切换虚拟环境

用Jupyter打开一个文件,但是需要换虚拟环境怎么做呢?ModuleNotFoundError: No module named ‘keras‘ 解决办法Jupyter Notebook——Windows平台上中如何切换虚拟环境

2021-01-30 07:13:25 103 2

原创 python3.7+dlib实现简单的人脸检测

首先安装dlib模块:python3.7+pycharm+dlib的安装导入dlib和cv2模块import dlibimport cv2import osdetector = dlib.get_frontal_face_detector() # 获取一个脸部检测器,这个检测器包含了脸部检测算法win = dlib.image_window() # 创建一个图像窗口img = cv2.imread('test_data/test1.jpg') # 读取待辨别的图像# 利用脸部检测器读

2021-01-27 14:06:54 3718 27

原创 face_recognition小实战:显示未知图片中已知人物的脸

要求如下:给一张已知的人脸(杨幂),让你在未知图片中找到杨幂,并且在那张未知图片中把杨幂的脸标记起来代码如下:import face_recognitionfrom PIL import Image, ImageDrawimport cv2# 加载一张合照unknown_image = face_recognition.load_image_file('C:/Users/lenovo/Desktop/opencv/daima/banknum/stage1/test_data/test3.j

2021-01-27 13:58:07 595 4

原创 face_recognition库的安装以及学习

安装face_recognition库:在pycharm的解释器的商店里直接搜 face-recognition(注意不是face_recognition,这个搜不到的!!!)然后安装就可以用了一、load_image_file这个方法主要用于要加载识别的人脸图像,加载返回的数据是Numpy数组。里面记录了图片的所有像素的特征向量。二、face_locations定位图中所有人脸的像素位置返回值是一个列表形式,列表中每一行是一张人脸的位置信息,包括[top, right, botto

2021-01-27 13:33:01 528 2

原创 pip里面已经下载好的库,但是conda list里面找不到/pip安装了包但pycharm里找不到(pip如何安装到conda下)

conda里面安装第三方库总能遇到奇怪的问题使用pip 安装了dlib,但是打开pycharm里import还是报错,打开pycharm设置,里面的解释器里找到了dlib的包,但是安装不上应该是我的python版本问题。原因:安装了anaconda,解释器使用的是anaconda的python解决方案:1.不使用anaconda的解释器,使用原系统的解释器。  直接使用原来的Python3.7,不用conda的Python3.7然后就可以成功import dlib了2.如果就要在anaco

2021-01-26 21:09:36 330 8

原创 python3.7+pycharm+dlib的安装

由于python3.7不能直接用pip下载安装dlib,所以要在网上下载dlib的whl,然后再安装解决方法:第1步下载对应python3.7的whl文件:链接: https://pan.baidu.com/s/1MKqW7WH2XP-J8MOLeq3cDA提取码: rfh8第2步将下载好的whl放到当前目录下第3步使用命令pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl注意:我是在Anaconda Prompt里面输入的,没下载

2021-01-26 20:08:01 657 9

原创 Fatal error in launcher: pip安装第三方库时出现以下报错(已解决)

Fatal error in launcher:我在用pip安装第三方库dlib时,出来个这样的错误,查了一下可能是pip库没有升级到最新造成的!解决方法是:python -m pip install --upgrade pip然后重新输出安装dlib的命令就成功了pip install dlib-19.17.99-cp37-cp37m-win_amd64.whl...

2021-01-26 19:53:47 82

原创 TensorFlow2.0 学习笔记 2.5:维度变换

TensorFlow2-维度变换目录一、TensorFlow2-维度变换二、Outline(大纲)三、图片视图四、First Reshape(重塑视图)五、Second Reshape(恢复视图)六、Transpose(转置)七、Expand_dims(增加维度)八、Squeeze(挤压维度)TensorFlow2-维度变换Outline(大纲)shape, ndimreshapeexpand_dims/squeezetranspose图片视图[b, 28,

2021-01-25 21:22:28 178 15

原创 python 弹窗提示警告框MessageBox

需求:在用Airtest做自动化脚本测试的时候,想让程序因为错误终止的时候,电脑弹出警告框。在网上找到的简单命令需要安装pywin32模块,pip install pywin32##pip install pywin32import win32api,win32con ##提醒OK消息框win32api.MessageBox(0, "这是一个测试提醒OK消息框", "提醒",win32con.MB_OK) ##是否信息框win32api.MessageBox(0, "这是一个测试是否

2021-01-25 20:22:25 247 2

原创 Pytorch学习笔记 2.5:索引与切片

index索引torch会自动从左向右索引例子:a = torch.randn(4,3,28,28)表示类似一个CNN 的图片的输入数据,4表示这个batch一共有4张照片,而3表示图片的通道数为3(RGB),(28,28)表示图片的大小一、基本索引索引1:表示第零张图片的shapeprint(a[0].shape)#torch.Size([3,28,28])索引2:第零张图片的第零个通道的sizeprint(a[0,0].shape)#torch.Size([28,28])

2021-01-25 13:17:39 245 7

原创 Pytorch学习笔记 2.4:创建Tensor

一、直接创建1.1 通过torch.tensor创建张量 torch.tensor( data,dtype=None, device=None, requires_grad=False, pin_memory=False)data:数据,可以是list,numpydtype:数据类型,默认与data一致device:所在设备,cuda/cpurequires_grad:是否需要梯度pin_memory:是否存于锁页内存举例:

2021-01-25 11:30:11 114 2

原创 Pytorch学习笔记 2.3:基本数据类型

数据类型Type checkDimension 0 / rank 0维度Dimension:0 / 秩rank:0NumPy中的维度(dimension)、轴(axis)、秩(rank)的含义Dim 0Dim 1 / rank 1Linear Input(线性输入)Dim 1Dim 2Linear input batch(线性批量输入)Dim 3RNN Input Batch(循环神经网络批量输入)Dim 4CNN: [b, c, h, w]卷积神经网络Mixe

2021-01-25 10:07:11 84 1

原创 Pytorch学习笔记 2.2:线性回归下的梯度下降

线性回归下的梯度下降The Gradient Descent Of Linear Regression自学视频PyTorch学这个就够了!:课件以及代码:Pytorch.zip这节课(lesson 3)用到的数据集和代码:lesson03代码及数据.zip我用的Pycharm运行的,大家关注我就能下载了,不用收费 呜呜呜。学他学他学他!就学他!讲的太透彻了,我刚上初中就能听明白,小白一枚之前看Pytorch的教程死活看不懂,没想到这个一看就明白了!兄弟姐妹们学起来!这里有一个loss函数:当

2021-01-23 18:03:49 805 18

原创 Pytorch学习笔记 2.1:深度学习库

深度学习库能做什么?GPU加速import torchimport timeprint(torch.__version__)print(torch.cuda.is_available())a = torch.randn(10000, 1000) # 随机生成服从正态分布10000行x1000列的张量b = torch.randn(1000, 2000)t0 = time.time()c = torch.matmul(a, b)t1 = time.time()print(a

2021-01-23 13:33:10 233 7

原创 Pytorch学习笔记 1.3:Numpy和Torch函数的对比

torch.from_numpy()转换成torch的tensor数据torch_data.numpy()把torch数据转换为numpy数据import torchimport numpy as np# 把numpy数据转换为torch数据np_data = np.arange(6).reshape(2, 3)torch_data = torch.from_numpy(np_data) # 转换成torch的tensor数据# 把torch数据转换为numpy数据tensor2a

2021-01-23 11:09:41 2228 23

原创 Pytorch学习笔记 1.2:Pytorch环境安装

Pytorch环境安装Pytorch官网选择你要用的版本由于国内直接安装pytorch会很慢,而且容易出错,所以一般会采用清华镜像安装速度会快很多。详细步骤直接引用自这里:https://mirror.tuna.tsinghua.edu.cn/help/anaconda/强力建议用的清华的Pytorch镜像!!!一、修改.condarc文件在“ C:\Users\用户名 ” 目录下找到.condarc文件,将下面的内容拷贝到这个文件。如果没有这个文件,可先执行 conda config --se

2021-01-23 09:48:35 168 6

原创 Pytorch学习笔记 1.1:梯度下降

Pytorch学习笔记Pytorch初学者小白b站视频:PyTorch 动态神经网络 (莫烦 Python 教学)初学者总是见到这样的图像,这些图像涉及到了家族的历史——Optimization(优化问题)优化能力是人类历史上的重大突破,它解决了很多实际生活中的问题,从而渐渐演化出了一个庞大的家族比如说:牛顿法(Newton’s method)最小二乘法(Least Squares method)梯度下降(Gradient Descent)而我们神经网络就是在梯度下降的分支中初学神

2021-01-23 08:47:16 97 3

原创 TensorFlow2.0学习笔记 2.4:损失函数

损失函数:损失函数是前向传播计算出的结果y与已知标准答案y_的差距神经网络的优化目标就是找到某套参数,使得计算出来的结果y和已知标准答案y_无限接近,也就是他们的差距loss值最小主流loss有三种计算方法:均分误差(mse)自定义交叉熵(ce)一、均分误差是前向传播计算的结果y与已知标准答案y_之差的平方。再求平均例子一:我把代码分开来看import tensorflow as tfimport numpy as npSEED = 23455rdm = np.random.

2021-01-22 20:37:30 89

原创 TensorFlow2.0学习笔记 2.3:激活函数

激活函数这一张图是我们上一讲实现鸢尾花分类时,用到的神经元模型 和它对应的前向传播公式从公式可以看出,即使有多层神经元首尾相连,构成深层神经网络,依旧是线性组合,模型的表达力不够这张图是1943年提出的MP模型比上面的简化模型多了一个非线性函数,这个非线性函数,叫做激活函数。神经网络可以随层数的增加提升表达能力常用的激活函数Sigmoid()函数sigmoid函数也叫Logistic函数,用于隐层神经元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特

2021-01-22 11:54:34 64 1

原创 TensorFlow2.0学习笔记 2.2:复杂度学习率

复杂度学习率随着迭代轮数的增加,学习率 lr 在指数衰减

2021-01-22 10:07:22 68 1

原创 TensorFlow2.0学习笔记 2.1:神经网络优化过程——函数知识

tf.where()np.random.RandomState.rand()np.vstack()

2021-01-22 09:27:37 87 5

原创 TensorFlow2.0学习笔记1.5:神经网络实现鸢尾花分类

神经网络实现鸢尾花分类我们用神经网络实现鸢尾花的分类需要三部准备数据包括数据集读入、数据集乱序、生成train和test(也就是永不相见的训练集和测试集)、把训练集和测试集中的数据配成输入特征和标签对搭建网络定义神经网络中所有可训练参数优化可训练参数利用嵌套循环迭代、with结构更新参数(在with结构中,求得损失函数loss对每个可训练参数的偏导数,更新这些可训练参数),显示当前close测试效果为查看效果,程序中可加入每遍历一次数据集,显示当前准确率,还可以画出准确率

2021-01-22 08:55:02 122 1

原创 TensorFlow2.0学习笔记1.4:鸢尾花数据集读入

鸢尾花的分类是如何使用神经网络的方法实现首先要有数据Iris提供了150组数据,每组包括花萼长、花萼宽、花瓣长、花瓣宽4个输入特征。同时给出了,这一组输入特征对应的鸢尾花类别,包括0狗尾草鸢尾、1杂草鸢尾、2弗吉尼亚鸢尾三类安装scikit-learn和pandas两个包pip install scikit-learnpip install pandas代码如下:from sklearn import datasetsfrom pandas import DataFrameimport

2021-01-21 14:17:13 101 2

原创 TensorFlow2.0学习笔记1.3:函数基础讲解三

我们可以在with结构中使用tf.GradientTape()函数 实现某个函数对指定参数的求导运算配合刚才讲过的variable函数,可以实现损失函数loss对参数w的求导运算import tensorflow as tfwith tf.GradientTape() as tape: w = tf.Variable(tf.constant(3.0)) loss = tf.pow(w, 2)grad = tape.gradient(loss, w)print(grad)在这个

2021-01-21 13:31:02 101 2

原创 TensorFlow2.0学习笔记1.2:函数基础讲解二

tf.cast()用于实现强制类型转换用 tf.reduce_min() 找到张量中的最小值用 tf.reduce_max() 找到张量中的最大值我们构建一个张量x1,把它变成32位整形,它的最小值是1,它的最大值是3axis可以指定操作的方向,对于一个二维张量,如果axis=0,表示对第一个维度进行操作,axis=1,表示对第二个维度进行操作 axis=0,表示纵向操作,沿经度方向 axis=1,表示横向操作,沿纬度方向比如 我们可以通过调整axis=0或1来控制求平均值的方向tf.redu

2021-01-21 11:09:32 84

原创 TensorFlow2.0学习笔记1.1:张量(Tensor)生成和函数基础讲解一

张量(Tensor)生成0阶张量叫做标量,表示的是一个单独的数,比如s=1231阶张量叫做向量,表示的是是一个一维数组,比如列表v=[1, 2, 3]2阶张量叫做矩阵,表示的是一个二维数组,它可以有i行j列个元素,每个元素用它的行号和列号共同索引到。比如 矩阵中,元素2的索引就是矩阵m的第0行第1列判断张量是几阶的,就看有几个’['方括号。0个是0阶,1个是1阶,2个是2阶,n个是n阶所以张量可以表示1阶到n阶的数组Tensorflow的数据类型有32位整形、32位浮点、64位浮点、布尔型、字

2021-01-21 09:58:57 111 1

原创 Attempting to fetch value instead of handling error Internal: failed to get device attribute 13 for

Attempting to fetch value instead of handling error Internal: failed to get device attribute 13 for device 0: CUDA_ERROR_UNKNOWN: unknown error问题来源:Python安装tensorflow执行时出现问题。问题产生的原因:驱动与cuda不匹配,更新nvidia驱动即可。解决办法:进入cuda-gpu匹配页面: http://developer.nvidia.co

2021-01-21 08:58:18 127 2

原创 TensorFlow2.0环境的配置

TensorFlow2.0环境的配置自学视频:【北京大学】Tensorflow2.0一、安装Anaconda3官网下载即可默认方式安装安装完后 将anaconda3加入环境变量2、TensorFlow的安装2.1 创建TF2.1环境conda create -n TF2.1 python=3.7 选择y表示同意安装相关软件包2.2 windows10安装cuda10.1以及cudnn点击链接 上次写过。电脑上要是没有英伟达显卡的跳过2.2 直接进入2.32.3 安装tens

2021-01-20 21:01:33 118 2

原创 windows10安装cuda10.1以及cudnn遇到的各种问题

学tensorflow要用到英伟达的cuda包,然后安两个小时没整出来,全是问题,遇到困难果断睡大觉,连睡五个小时 真爽!!!先说我遇到的问题:我英伟达CUDA的版本是9.1 而要用的是10.1,我的太老了,需要升级windows10安装cuda10.2win10安装cuda10.1+cudnn760CUDA10.1下载完后,没找到NVINIA GPU Computing Toolkit文件夹,搞得我连装三遍,才发现问题Windows10 -64 安装tensorflow遇到的:cuda安

2021-01-20 19:51:16 367 2

原创 opencv学习二十四:数字验证码识别案例

windows 10环境下安装Tesseract-OCR与python集成我的环境win10+python3.7 +opencv3.4前言Tesseract是一个开源的ocr引擎,可以开箱即用,项目最初由惠普实验室支持,1996年被移植到Windows上,1998年进行了C++化。在2005年Tesseract由惠普公司宣布开源。2006年到现在,都由Google公司开发。官网宣传目前支持100多种语言的识别,根据我的测试,目前感觉其对机器打印的比较规整的英语,或者阿拉伯数字的识别准确率还是挺高的,

2021-01-20 08:44:39 98 2

原创 opencv学习二十三:人脸检测

人脸检测OpenCV自带了函数detectMultiScale()可以实现对行人和人脸的检测,实现简单,但识别效果相对较差。Opencv的人脸检测函数,定义了具体可跟踪对象类型的数据文件。Haar级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配。两个图像的相似程度可以通过它们对应特征的欧式距离来度量。距离可能以空间坐标或颜色坐标来定义。类Haar特征是一种用于实现实时人脸跟踪的特征。每个类Haar特征都描述了相邻图像区域的对比模式。例如,边,顶点和细线都能生成具有判断性的

2021-01-19 21:10:01 232 10

原创 opencv学习二十二:分水岭算法

使用分水岭算法进行图像分割       (一)获取灰度图像,二值化图像,进行形态学操作,消除噪点  (二)在距离变换前加上一步操作:通过对上面形态学去噪点后的图像,进行膨胀操作,可以得到大部分都是背景的区域(原黑色不是我们需要的部分是背景)    (三)使用距离变换distanceTransform获取确定的前景色相关知识补充(重点)  (四)在获取了背景区域和前景区域(其实前景区域是我们的种子,我们将从这里进行灌水,向四周涨

2021-01-19 15:52:52 85

原创 opencv学习二十一:顶帽、黑帽、形态学梯度

一、顶帽TOPHAT又称礼帽,是原始图像与进行开运算之后得到的图像的差。礼帽图像=原始图像-开运算图像得到噪声图像开运算:先腐蚀再膨胀使用方法:morphologyExcv2.MORPH_TOPHAT结果=cv2.morphologyEx(原始图像,cv2.MORPH_TOPHAT,卷积核)卷积核示例:k=np.ones((10,10),np.uint8)代码如下:import cv2 as cvimport numpy as npdef top_hat_demo(image):.

2021-01-19 10:26:22 64

原创 opencv学习二十:开闭操作与水平或垂直线的提取

一、开运算开运算:对图像先进行腐蚀,然后对腐蚀后的图进行膨胀开操作=腐蚀+膨胀主要应用在二值图像,灰度 图像也可以。可以消除背景噪声morphologyEx运算结果=cv2.morphologyEx(源图像img,cv2.MORPH_OPEN,卷积核k)cv2.MORPH_OPEN:开运算import cv2 as cvimport numpy as npdef open_demo(image): print(image.shape) gray = cv.cvtCol

2021-01-19 09:10:00 93 1

原创 opencv学习十九:膨胀与腐蚀

膨胀一:膨胀实现dilate使用方法:dilate结果=cv2.dilate(二值图像src,卷积核k,迭代次数itreations)卷积核 正方形数组:如np.ones((5,5),np.uint8)import cv2 as cvimport numpy as npdef dilate_demo(image): #膨胀 print(image.shape) gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) ret,bina

2021-01-19 07:30:45 102

原创 opencv学习十八:对象测量

对象测量opencv 中轮廓特征包括:如面积,周长,质心,边界框等。多边形拟合API获取轮廓的多边形拟合结果python-opencv API提供方法:cv2.moments()用来计算图像中的中心矩(最高到三阶),cv2.HuMoments()用于由中心矩计算Hu矩,同时配合函数cv2.contourArea()函数计算轮廓面积和cv2.arcLength()来计算轮廓或曲线长度cv2.approxPolyDP(contour,epsilon,close)参数:contour 轮廓

2021-01-18 20:55:40 68

原创 opencv学习十七:轮廓发现

轮廓发现当通过阈值分割提取到图像中的目标物体后,就需要通过边缘检测来提取目标物体的轮廓,使用这两种方法基本能够确定物体的边缘或者前景。接下来,通常需要做的是拟合这些边缘的前景,如拟合出包含前景或者边缘像素点的最小外包矩形、圆、凸包等几何形状,为计算它们的面积或者模板匹配等操作打下坚实的基础。一个轮廓代表一系列的点(像素),这一系列的点构成一个有序的点集,所以可以把一个轮廓理解为一个有序的点集。轮廓发现是基于图像边缘提取的基础,寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓的发现轮廓发现A

2021-01-18 18:02:20 79 1

原创 opencv学习十六:圆检测

圆检测原理圆周上任意三点所确定的圆,经Hough变换后在三维参数空间应对应一点。遍历圆周上所有点,任意三个点所确定的候选圆进行投票。遍历结束后,得票数最高点(理论上圆周上任意三点确定的圆在Hough变换后均对应三维参数空间中的同一点)所确定的圆 即为该圆周上,绝大多数点所确定的圆(以下称为当选圆),即绝大多数点均在该当选圆的圆周上,以此确定该圆。圆形的表达式为(x−xcenter)2+(y−ycenter)2=r2(x−xcenter)2+(y−ycenter)2=r2,一个圆环的确定需要三个参数。

2021-01-18 14:10:38 74

Pytorch.zip

B站视频《PyTorch学这个就够了!》的课件以及代码,还有数据集

2021-01-23

ctf工具之密码学.zip

RSA解题工具,Ashdict弱密码生成器,hash密文识别,JS混淆,彩虹表工具,米斯特团队工具,密码机器,小葵多功能转换工具等

2020-10-07

ctf之逆向工具包.zip

CTF逆向工具包,里面包含Androidnxzh,DeDeDark,IDAPro6.6,ILspyTool,WinHex等安装工具

2020-10-05

lesson03代码及数据.zip

B站《PyTorch学这个就够了!》第三讲的代码以及训练数据

2021-01-23

phpStudy_64.zip

phpstudy已经为PHP开发者提供了十年的开发环境服务,用户量最大的集成环境软件,生产环境,开发环境提供非常便捷的服务。

2020-10-07

CTF工具之WEB.zip

该工具包中含有17年永久火狐浏览器,抓包工具,SQL注入工具,webshell,网站后台扫描工具,代码审计系统等

2020-10-07

ctf解题之杂项.zip

里面包含图片隐写术,压缩包破解工具,wireshark,音频分析文件,Winhex进制编辑器,文件分离等

2020-10-07

解决burpsuit乱码

发表于 2020-10-08 最后回复 2020-10-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除