Deep Learning 工具

后之视今,亦犹今之视昔

在风口的时候,可以亲眼见证各种变化,于是才有机会体验什么是瞬息万变。当年以目标识别为切入点,依据网上有的各种资料,各种填坑安装,重装,兵分几路,尝试caffe, mxnet, tensorflow,torch, cntk, darknet。

  1. cntk用的太少,基本被放弃。
  2. darknet仅仅是对yolo的专属,难以扩展,也没有专门去看。
  3. torch那时仅仅支持lua,虽然买了本lua的书啃,但是生态还是个大问题,迫于tensorflow的压力后面最终还是推出了pytorch,大有超越tensorflow之势。
  4. tensorflow感觉越来越庞杂,bazel的编译也是。。。
  5. 李沐、陈天奇等人的mxnet当时也是个厉害的角色,可惜没有大公司背书,生态很难起来。现在李沐本尊都已经有了《手把手教你》系列教程了。
  6. caffe真的是个祖传工具,推出早,成名早,用户积累广,是源码debug研究的绝好材料,虽然后面一度被python接口的tensorflow碾压,在贾扬清大神加盟Facebook,推出caffe2以后,和pytorch配合训练+部署一条龙服务,简直不要太友好。

Caffe概览

祖传工具的好处是,有各种前人已经帮你把它揉碎嚼烂消化吸收好之后,呈现在你面前,可以大大的提升小白的学习效率。总的印象它大约是长成如下这个样子
在这里插入图片描述

Caffe的反向传播推导

结合安排和自己的兴趣,当时重点源码debug反向传播这一块。
以Softmax 函数为例,假设数据 x {\mathbf{x}} x对应的标签为 y {\mathbf{y}} y,观察到的数据 x {\mathbf{x}} x,属于类别 i {i} i的概率为 o i {o_{i}} oi, Softmax 函数: σ ( z ) = ( σ 1 ( z ) , . . . , σ m ( z ) ) {\mathbf{\sigma}(\mathbf{z} )=(\sigma_{1}(\mathbf{z}),...,\sigma_{m}(\mathbf{z}))} σ(z)=(σ1(z),...,σm(z))
o i = σ i ( z ) = e x p ( z i ) ∑ j = 1 m e x p ( z j ) , i = 1 , . . . , m o_{i}=\sigma_{i}(\mathbf{z})=\frac{exp(z_{i})}{\sum_{j=1}^{m}exp(z_{j})},i=1,...,m oi=σi(z)=j=1mexp(zj)exp(zi),i=1,...,m
反向传播的动力源头-Multinomial Logistic Loss
l ( y , o ) = − l o g ( o y ) l(y,o)=-log(o_{y}) l(y,o)=log(oy)
∂ l ( y , o ) ∂ o i = − δ i y o y \frac{\partial l(y,o)}{\partial o_{i}}=-\frac{\delta_{iy}}{o_{y}} oil(y,o)=oyδiy
δ k y = { 1 k = y 0 k!= y \delta_{ky}=\left\{ \begin{array}{ll} 1 & \textrm{k = y}\\ 0 & \textrm{k!= y}\\ \end{array} \right. δky={10k = yk!= y
Softmax的导数
∂ o i ∂ z k = δ i k e z i ( ∑ j = 1 m e z i ) − e z i e z k ( ∑ j = 1 m e z i ) 2 = δ i k o k − o i o k \frac{\partial o_{i}}{\partial z_{k}}=\frac{\delta_{ik}e^{z_{i}}(\sum_{j=1}^{m}e^{z_{i}})-e^{z_{i}}e^{z_{k}}}{(\sum_{j=1}^{m}e^{z_{i}})^2}=\delta_{ik}o_{k}-o_{i}o_{k} zkoi=(j=1mezi)2δikezi(j=1mezi)eziezk=δikokoiok
引入chain rule,得到SoftmaxWithLoss的导数
∑ i = 1 m ∂ o i ∂ z k ⋅ ∂ l ( y , o ) ∂ o i = o k − δ y k o k o y = o k − δ y k \sum_{i=1}^{m}\frac{\partial o_{i}}{\partial z_{k}}\cdot \frac{\partial l(y,o)}{\partial o_{i}}=o_{k}-\delta_{yk}\frac{o_{k}}{o_{y}}=o_{k}-\delta_{yk} i=1mzkoioil(y,o)=okδykoyok=okδyk
Numerical Stability:
如果分成两层计算,除了计算量增大,数值稳定性也变差。由于浮点数有精度限制,每多一次运算就多累积一定误差,且分两步计算时,我们需要计算 δ i y o y \frac{\delta_{iy}}{o_{y}} oyδiy ,如果这次预测非常不准,正确的类别所得到的概率非常小, 会产生overflow。

Caffe的反向传播代码

softmaxwithloss的反向传播实现

template <typename Dtype>
void KLNSOFTMAXLossLayer<Dtype>::Backward_cpu(
const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, 
const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[1]) {
    LOG(FATAL) << this->type()
               << "Layer cannot backpropagate to label inputs.";
  }
  if (propagate_down[0]) {
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const Dtype* prob_data = prob_.cpu_data();
    caffe_copy(prob_.count(), prob_data, bottom_diff);
    const Dtype* label = bottom[1]->cpu_data();
    int dim = prob_.count() / outer_num_;
    int count = 0;
    for (int i = 0; i < outer_num_; ++i) {
      for (int j = 0; j < inner_num_; ++j) {
        const int label_value = 
        static_cast<int>(label[i * inner_num_ + j]);
        if (has_ignore_label_ && label_value == ignore_label_) {
         for (int c = 0; c < bottom[0]->shape(kln_softmax_axis_); ++c) 
         {
            bottom_diff[i * dim + c * inner_num_ + j] = 0;
          }
        } else {
          bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
          ++count;
        }
      }
    }// Scale gradient
    Dtype loss_weight = top[0]->cpu_diff()[0] /
                        get_normalizer(normalization_, count);
    caffe_scal(prob_.count(), loss_weight, bottom_diff);
  }
}

Caffe手动添加一个自己的层

  • Step1: 添加ReLU在caffe.proto中的消息定义
message KLNReLUParameter {
   optional float negative_slope = 1 [default = 0];
  enum Engine {
    DEFAULT = 0;
    CAFFE = 1;
    CUDNN = 2;
  }
  optional Engine engine = 2 [default = DEFAULT];
}
  • Step2: 在caffe.proto的LayerParameter中添加最新的ID
message LayerParameter {
  optional string name = 1; 
  optional string type = 2; 
  repeated string bottom = 3; 
  repeated string top = 4; 
......
  optional AccuracyParameter accuracy_param = 102;
  optional ArgMaxParameter argmax_param = 103;
  optional BatchNormParameter batch_norm_param = 139;
  optional BiasParameter bias_param = 141;
  optional ConcatParameter concat_param = 104;
......
  optional KLNReLUParameter kln_relu_param = 147;
}
  • Step3: 在include/caffe/layers/中添加一个头文件kln_relu_layer.hpp
#ifndef CAFFE_KLN_RELU_LAYER_HPP_
#define CAFFE_KLN_RELU_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/layers/kln_neuron_layer.hpp"
namespace caffe {
template <typename Dtype>
class KLNReLULayer : public KLNNeuronLayer<Dtype> {
 public:
  explicit KLNReLULayer(const LayerParameter& param)
      : KLNNeuronLayer<Dtype>(param) {}
  virtual inline const char* type() const { return "KLNReLU"; }
 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top){
      NOT_IMPLEMENTED;
  };
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, 
      const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, 
      const vector<Blob<Dtype>*>& bottom){
      NOT_IMPLEMENTED;
  };
};
}  // namespace caffe
#endif  // CAFFE_KLN_RELU_LAYER_HPP_
  • Step4:在src/caffe/layers/中添加对应的实现文件kln_relu_layer.cpp

#include <algorithm>
#include <vector>
#include "caffe/layers/kln_relu_layer.hpp"
namespace caffe {
template <typename Dtype>
void KLNReLULayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom,const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  const int count = bottom[0]->count();
  Dtype negative_slope =
  this->layer_param_.kln_relu_param().negative_slope();
  for (int i = 0; i < count; ++i) {
    top_data[i] = std::max(bottom_data[i], Dtype(0))
        + negative_slope * std::min(bottom_data[i], Dtype(0));
  }
}
template <typename Dtype>
void KLNReLULayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* bottom_data = bottom[0]->cpu_data();
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const int count = bottom[0]->count();
    Dtype negative_slope =
    this->layer_param_.kln_relu_param().negative_slope();
    for (int i = 0; i < count; ++i) {
      bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0)
          + negative_slope * (bottom_data[i] <= 0));
    }
  }
}
INSTANTIATE_CLASS(KLNReLULayer);
}  // namespace caffe
  • Step5:在src/caffe/layer_factory.cpp中添加对应的注册实现
...
#include "caffe/layers/kln_relu_layer.hpp"
...
template <typename Dtype>
shared_ptr<Layer<Dtype>> GetKLNReLULayer(const LayerParameter& param) {
  KLNReLUParameter_Engine engine = param.kln_relu_param().engine();
  if (engine == KLNReLUParameter_Engine_DEFAULT) {
    engine = KLNReLUParameter_Engine_CAFFE;
  }
  if (engine == KLNReLUParameter_Engine_CAFFE) {
    return shared_ptr<Layer<Dtype> >(new KLNReLULayer<Dtype>(param));
  } else {
    LOG(FATAL) << "Layer " << param.name() << "has unknown engine.";
  }
}
REGISTER_LAYER_CREATOR(KLNReLU, GetKLNReLULayer);

后记

看到这里就知道为什么当时如火如荼的caffe后来被“新涌现”的tensorflow压倒,tensorflow也有重蹈覆辙之势。“每览昔人兴感之由,若合一契,未尝不临文嗟悼,不能喻之于怀。固知一死生为虚诞,齐彭殇为妄作。后之视今,亦犹今之视昔”。

- [1] 深度学习:21天实战Caffe. 赵永科,电子工业出版社.
- [2] http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值