机器学习(1)——概率图模型之隐马尔科夫模型

1、概念

概率模型( probabilistic model )中,利用已知变量 “推断( inference )” 未知变量的条件分布。

假定未知变量为 Y Y Y ,已知变量为 X X X ,其他变量为 R R R,生成式模型考虑联合分布 P ( Y , R , X ) P(Y,R,X) P(Y,R,X),判别式模型考虑条件分布 P ( Y , R ∣ X ) P(Y,R|X) P(Y,RX) 。推断就是根据 P ( Y , R , X P(Y,R,X P(Y,R,X P ( Y , R ∣ X ) P(Y,R|X) P(Y,RX) 得到条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX)

概率图模型( probabilistic graphical model ) 是一类用图表达变量相关关系的概率模型。一个节点表示一个或一组随机变量,节点之间的边表示变量间的概率相关关系。根据边的性质不同,概率图模型可以分为两种:第一类使用有向无环图表示变量之间的依赖关系,称为有向图模型或贝叶斯网( Bayesian network );第二类是使用无向图表示变量之间的相关关系,成为无向图模型或马尔可夫网( Markov network )。

这里依赖关系是指函数关系,当一个或几个变量取一定值时,另一个变量有确定值与之对应。当变量X取某个值时,变量Y的取值可能有若干个,这些数值表现为一定的波动性,但总是围绕着它们的平均数,并遵循一定的规律变动。变量之间存在的这种不确定的数量关系称为相关关系。特点:Y与X的值不一一对应;Y与X的关系不能用函数式严格表达,但有规律可循。

区分相关关系与函数关系的依据全凭因变量取值的确定性:若因变量的取值是确定的、唯一的,则两个变量之间的关系称为函数关系;若因变量的取值是不确定的,则两个变量之间的关系称为相关关系

2、隐马尔科夫模型

隐马尔科夫模型(HMM)是结构最简单的动态贝叶斯网,是一种著名的有向图模型。

马尔可夫链(Markov chain):系统下一时刻的状态仅由当前状态决定,不依赖于以往的任何状态。

隐马尔科夫模型中,状态变量可分为两组。第一组为隐藏的状态变量 y t ∈ { s 1 , s 2 , ⋯   , s N } y_t \in \left\{ s_1,s_2,\cdots,s_N \right\} yt{ s1,s2,,sN} y t y_t yt 表示 t t t 时刻的状态,共 N N N 个状态,此状态变量为未知变量(也称为隐变量) S S S 。第二组为可观测的状态变量, x t = { o 1 , o 2 , ⋯   , o M } x_t = \left\{ o_1,o_2,\cdots,o_M \right\} xt={ o1,o2,,oM} , x t x_t xt 表示 t t t 时刻的观测状态,此状态变量为已知变量 O O O

2.1、《机器学习》(周志华著)中的例子

1

观测值 x t ∈ O x_t \in O xtO y t ∈ S y_t \in S ytS 决定,状态值 y t y_t yt y t − 1 y_{t-1} yt1 决定, t t t 为时刻。箭头所指方向为状态可转变的方向(依赖关系)。

所有变量的联合概率分布如下:
P ( x 1 , y 1 , ⋯   , x n , y n ) = P ( y 1 ) P ( x 1 ∣ y 1 ) ∏ t = 2 n P ( y t ∣ y t − 1 ) P ( x t ∣ y t ) P(x_1,y_1,\cdots,x_n,y_n) = P(y_1)P(x_1|y_1)\prod_{t=2}^n P(y_t|y_{t-1})P(x_t|y_t) P(x1,y1,,xn,yn)=P(y1)P(x1y1)t=2nP(ytyt1)P(xtyt)
在等式1中, P ( x t ∣ x 1 , y 1 , ⋯   , x t − 1 , y t − 1 , y t ) = P ( x t ∣ y t ) P(x_t|x_1,y_1,\cdots,x_{t-1},y_{t-1},y_t) = P(x_t|y_t) P(xtx1,y1,,xt1,yt1,yt)=P(xtyt) , x t x_t xt 与其他变量无关,仅与 y t y_t yt 有关。这里涉及马尔可夫模型的另一个假设,独立性假设:假设任意时刻的观测只依赖于该时刻的马尔可夫链的状态,与其它观测状态无关。欲求 x t x_t xt ,只能先求与其相关的 y t y_t yt
P ( x t ∣ y 1 , ⋯   , y t , x 1 , ⋯   , x t − 1 ) = P ( x t ∣ y t ) P(x_t|y_1,\cdots,y_t,x_1,\cdots,x_{t-1}) = P(x_t|y_t) P(xty1,,yt,x1,,xt1)=P(xtyt)
所以可以将 ( x t , y t ) (x_t,y_t) (xt,y

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值