/*
欧拉回路,一笔画问题:
1 图是联通的
2 图中的度为奇数的点是0或者2
其他情况都不是一笔画。
*/
#include<stdio.h>
#include<string.h>
#define MAX 1010
//#define MAX 10
int a[MAX],rank[MAX],ans[MAX];//a表示的是父节点,rank表示的是树的高度,ans表示的是节点的度
int find(int x)/*查找一个元素所在的集合,直到找到他的祖先等于他自己为止*/
{
int temp;
if(x==a[x]) return x;
else return temp=find(a[x]);
}
void uni(int x,int y)/*合并x,y所在的两个集合*/
{
if(rank[x]>rank[y])/*按等级高低进行合并,低等级向高等级并拢,不小心在这里wa了几次*/
{
rank[x]++;
a[y]=x;/*y向x并拢,那么就把y的祖先变成x*/
}
if(rank[x]<rank[y])
{
rank[y]++;
a[x]=y;
}
if(rank[x]==rank[y])
{
rank[x]++;
a[y]=x;
}
}
void make_set()/*把每一个元素初始化为一个集合*/
{
for(int i=0;i<MAX;i++)
{
a[i]=i;/*初始化,刚开始使自己的自己的祖先*/
}
}
int main()
{
//freopen("in.txt","r",stdin);
int ncases,n,m,x,y,i,j,count,jdcount;
scanf("%d",&ncases);
while(ncases--)
{
memset(rank,0,sizeof(rank));/*等级初始化为零*/
memset(ans,0,sizeof(ans));
make_set();
count=0;
jdcount=0;
scanf("%d %d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d %d",&x,&y);
//如果说x和y联通,那么的话,x的度++,y的度++
ans[x]++;
ans[y]++;
x=find(x);/*查找x的祖先*/
y=find(y);/*查找y的祖先*/
if(x!=y)
{
uni(x,y);/*如果祖先不相等,则需要把他们俩合并在一起*/
}
}
//这里是计算有几颗树,因为并查集只有根的父节点是自己。
//(如果说只有一棵树,那么表示所有的点联通)
for(i=1;i<=n;i++)/*依次判定每一个元素*/
{
if(find(i)==i)/*如果自己的祖先是自己,则证明已经没有别的集合并在一起,也就说明没有连通,不能一笔画*/
{
count++;
}
}
for(i=1;i<MAX;i++)
{
if(ans[i]%2==1)
{
jdcount++;
}
}
if((jdcount==0||jdcount==2)&&count==1)/*奇点个数为0或者为2时而且图是连通猜能一笔画*/
{
printf("Yes\n");
}
else
{
printf("No\n");
}
}
return 0;
}
(精)(图论加强)一笔画问题(欧拉回路)
最新推荐文章于 2023-12-15 16:17:55 发布