最近我发现了一个 AI 搜索神器,叫:MindSearch,这个 AI 搜索神器号称比 Perplexity.ai 还厉害。
到底怎么个厉害法呢?
我试了试,感觉从产品设计的角度来讲,还是很新颖的。
首先,MindSearch 是由上海人工智能实验室和中科大联合研发的开源 AI 搜索引擎框架,旨在通过模仿人类思维过程来实现深度知识探索。
这个 AI 搜索神器最大的特点就在于「先思后索」,把「思·索」分成了两个步骤,所以在整个搜索过程中,有两个角色在执行任务,分别是:思考者和执行者。
用比较官方的介绍就是:和现有的 AI 搜索引擎技术相比,MindSearch 因为采用了多智能体框架和模拟了人的思维过程,会先对问题进行拆解和规划,因此在回答的信息准确性、完整性和时效性上具有显著的优势。
比如,我希望知道王者荣耀当前赛季哪个射手最强,Perplexity.ai 会直接将这个问题交给搜索引擎并基于搜索结果给出回复,而 MindSearch 则会在思考规划之后,先查询当前赛季的信息,再基于赛季信息进行进一步检索。而针对更加复杂的问题,如近三年全球各大电影节的获奖影片名单,MindSearch 也能先了解全球电影节,然后对各电影节按年份进行完整搜索,而 Perplexity.ai 则无法完整地进行规划。
这么说,感觉有点抽象,咱举两个例子。
1、比如,我搜索「非著名程序员是谁?」,像这个问题,普通的 AI 搜索根据问题,然后搜索网页,然后进行内容的总结整理,给我们生成一个答案。
如果是 MindSearch 呢?它会先思考,非著名程序员的定义是什么?如何定义非著名程序员,根据自己思考的定义,再去搜索,然后给出案例,最后给出答案。
MindSearch 每一步的思考都会带有答案和结果。
看看,左边会跟你你提问的问题,生成一个思考的结构化可视图,从原始问题出发,思考非著名程序员的定义,然后根据定义找到案例,最后给出最终回复。
上面可视化的思考结构图,每个节点都会点击查看,每个节点都有对应的答案或者结果。
右边就是三层结构,思考,然后根据思考去搜索得到的信息来源,最后,是信息整合。
超级有意思。
2、比如,我们再搜索一个问题:「程序员这个行业,现在怎么样?」
看看 MindSearch 整个搜索过程。
它说:要回答这个问题,我们需要分解问题并构建搜索图。我们可以从多个角度来了解程序员行业的现状,包括行业发展趋势、就业市场情况、薪资水平、以及技术需求等。
然后,它就生成了一个思考过程的结构化视图,然后根据这个思考去搜索整理答案。
比如,我点击结构化视图上的「薪资水平这个节点」,它在右边的显示如下:
先思考这个问题:程序员行业的平均薪资水平,然后列出了信息来源,最后对结果进行了信息整合。
这就是 MindSearch 最大的特点:先思考,再搜索。
如果我们对问题没有清晰的定义和梳理,你怎么能够得到好的答案呢?
我们都知道,一个好答案,往往来自于一个好问题。
所以,MindSearch 就是按照这个思路进行产品设计的。
我感觉挺有特色的。
当然了, MindSearch 也不是没有缺点,因为它的逻辑是先思考,后搜索,所以,整个搜索过程比其他的 AI 搜索引擎要慢。
总结一下,MindSearch 最大的三个特点:
1、多智能体框架:像个团队作战,分工合作,一个负责计划 (WebPlanner),一个负责搜索 (WebSearcher),通过模拟人类思维过程来实现深度知识探索和高效信息整合。
2、超强关联能力:刚才我们说了,思考的每个节点都会答案,所以,其核心理念是将复杂问题分解为多个子问题,并逐一解决。能在两三分钟从几百个网页里找到最靠谱的信息,这信息整合能力还是很强的。
3、开源,支持本地部署。可使用闭源大语言模型(如 GPT、Claude)或开源大语言模型(如 InternLM2.5 系列)进行部署。
体验地址:https://mindsearch.openxlab.org.cn/
点击下方公众号卡片,关注我
在公众号对话框,回复关键字 “1024”
有惊喜