再见,Cursor!最强大对手来了

今天凌晨 3 点起来给孩子喂奶的时候,打开 X 一看,有一个网友说:GoodBye Cursor 。

我想着 Cursor 怎么了?我用的还挺好的啊。

一看她的推特,原来又有一款王炸级的 AI 编程助手来了,叫:Augment Agent 。

Augment Agent 是一款由 Augment Code 公司于 2025 年 4 月 1 日推出的 AI 编码助手。

这个博主说,她使用 Augment Agent 仅有几分钟的时间,就克隆一个亚马逊的网站。

我想着,这么夸张吗?我记得如果使用 Cursor 的话,大概率写一个复杂的页面,token 是有限的,一次性无法输出完成,需要多次。

我看了看根据官方介绍,Augment Agent 是首个转为大型代码库工作的专业软件工程师设计的 AI 编码助手,上下文支持 200K ,也就是 20 万的 token 啊。

说实话,这对于我们专业的编程人员来讲,太实用了。

与 Cursor 不同的是,Augment Agent 不是一个单独的 IDE ,而是在 VS Code 和 JetBrains 中以插件的形式使用。这样也有好处,毕竟大家已经熟悉了自己手中使用的 IDE 编程软件,无需从头适应一款新的 IDE 了,插件属于无侵入式,易上手啊。

由于它支持超大的上下文,所以,它可以跨文件规划、编辑、运行测试、打开 PR - 所有这些都可以通过单个提示在 IDE 内完成。

我看了看介绍,除了支持 200 k 上下文这么好的功能之外,还有一大特点。

Augment Agent 支持持久性的内存,可以适应你的工作方式,怎么讲呢?就是它可以学习你的编码风格,记得你之前的重构,适配你的代码规范。记忆会随着时间的推移而积累。你不必在每次会话中重新教授它。

这个功能也挺好的,也是非常实用的,不会说在我们编程的时候,我用我的风格,使用 AI 助手的时候,AI 用它自己的风格,最后代码风格不一致。

除了基本的编码支持,Augment Agent 还支持多模态输入,如截图和 Figma 文件,用于修复错误和实现 UI 。

另外,目前 Augment Agent 通过结合 Anthropic 的 Claude Sonnet 3.7 和 OpenAI 的 O1 推理模型,在 SWE-bench verified 基准测试中取得了最高分,达到第 1 名(在真实任务上达到 65.4%)。

图像

图像

具体的功能特性,我整理了一个表格,见上图。

这么一看,Cursor 应该会有危机感了,当然了,我们程序员也应该有危机感了,没想到 AI 在咱们编程领域是越来越强大了。

另外,介绍一下我的星球社群,「AIGC・掘金成长研习社」一个高质量陪伴成长社群,主打陪伴和成长,我会每天第一时间在里面分享很多最新的知识和各种干货,持续坚持至少分享 10 年

星球内有很多干货,有 AI 工作流,Coze 智能体教程,有 AI 编程的教程,有 AI 副业或者个人成长、商业思考等内容。送一张立减 50 元的优惠券。

💡只需 99 元解锁全年 AI 进化指南:

✅ AI 领域的最新趋势与应用

✅保姆级 AI 工作流搭建教程

✅Coze 智能体开发全攻略

✅AI 编程实战案例手册

✅AI + 副业变现深度解析和实战干货

✅每日商业思考笔记连载

🎁新用户专享:3 天无理由全额退款

(悄悄说:已有 550 + 学员通过教程获得成长)

📌适合人群:

想用 AI 提升工作效率 / 开拓副业赛道 / 构建商业思维的终身学习者

早加入早受益,用一天的饭钱换全年 AI 进化加速!🚀

图片

长按扫码加入「AIGC・掘金成长研习社」,一起掘金,一起暴富,一起用 AI 赋能

图片

点击下方「非著名程序员」公众号卡片

关注我

在公众号对话框,回复关键字 “1024”

有惊喜

图片

内容概要:本文详细介绍了在COMSOL中使用不同参数估计方法(如小二乘法、遗传算法和贝叶斯推断)来跟踪输出浓度并与实验值进行误差比较的过程。首先,文章简述了扩散方程及其在COMSOL中的应用背景。接着,分别阐述了小二乘法、遗传算法和贝叶斯推断的具体实现步骤,包括目标函数的定义、参数设置以及优化求解器的选择。随后,讨论了如何通过后处理功能提取计算得到的浓度数据,并将其与实验值进行比较,以评估各方法的准确性。后,强调了选择合适的方法对于提高模型精度的重要性,并分享了一些实践经验,如避免自动网格细化、使用动态权重调整等技巧。 适合人群:从事工程仿真、化学工程、材料科学等领域研究的技术人员,特别是那些需要利用COMSOL进行参数估计和模型验证的研究者。 使用场景及目标:① 使用COMSOL进行复杂物理现象(如扩散、反应等)的数值模拟;② 对比不同参数估计方法的性能,选择适合特定应用场景的方法;③ 提高模型预测精度,确保仿真结果与实验数据的一致性。 其他说明:文中提供了大量实用的代码片段和技术细节,帮助读者更好地理解和应用这些方法。同时,作者还分享了许多实际操作中的经验和教训,提醒读者注意常见陷阱,如局部优、参数相关性和数据预处理等问题。
踏入智慧校园的新时代,一场科技与教育的深度融合正在悄然上演。本方案以大数据、云计算、AI等前沿技术为基石,为校园管理带来前所未有的变革与便捷。 一、一键智控,校园管理轻松升级 想象一下,只需轻点手机,就能实现校园的全面智控。从教学教务到行政后勤,从师生考勤到校园安全,智慧校园解决方案一网打尽。通过构建统一的数据中台,实现各系统间的无缝对接与数据共享,让繁琐的管理工作变得轻松高效。智能排课、自动考勤、在线审批……一系列智能应用让校园管理如虎添翼,让校长和老师们从繁琐的事务中解放出来,专注于教学创新与质量提升。 二、寓教于乐,学习生活趣味无穷 智慧校园不仅让管理变得更简单,更让学习生活变得趣味无穷。AI赋能的教学系统能根据学生的学习习惯和能力,提供个性化的学习路径与资源推荐,让学习变得更加高效有趣。同时,丰富的课外活动与社团管理模块,让孩子们的课余生活也充满了欢声笑语。从智慧班牌到智能录播,从家校共育到虚拟实验室,智慧校园让每一个角落都充满了探索的乐趣与知识的光芒。 三、安全守护,校园生活无忧无虑 在智慧校园的守护下,校园生活变得更加安全无忧。通过高清视频监控、智能预警系统与人脸识别技术,校园安全得到了全方位保障。无论是外来人员的入侵还是学生的异常行为,都能被及时发现并处理。同时,智能化的健康管理系统还能实时监测师生的健康状况,为校园防疫工作提供有力支持。智慧校园,用科技的力量为每一位师生筑起了一道坚实的安全防线,让校园生活更加安心、舒心。
### 关于全网全的Cursor的理解 在探讨“全网全”的概念时,需明确具体的应用场景和技术背景。对于Cursor而言,在不同的编程环境和应用场景下有着多样化的实现方式。 #### Cursor的概念及其重要性 Cursor通常指游标,是在程序执行过程中用于指示当前操作位置的对象。特别是在数据库管理和网页抓取(即爬虫)中扮演着至关重要的角色[^1]。它允许开发者逐条读取查询结果集中的记录,从而有效地处理大量数据而不会一次性加载整个数据集到内存中。 #### Python爬虫中的Cursor应用实例 考虑到Python爬虫系统的上下文中,“全网全”的Cursor可能指的是能够高效遍历并解析大规模Web页面结构的能力。下面是一个简单的例子来展示如何利用`requests`库获取HTML文档,并通过`BeautifulSoup`解析器创建一个可以迭代访问DOM节点的游标: ```python import requests from bs4 import BeautifulSoup def fetch_page(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 创建一个类似于cursor的功能,用来遍历所有的链接标签 link_cursor = (a['href'] for a in soup.find_all('a', href=True)) return link_cursor url = "http://example.com" for link in fetch_page(url): print(link) ``` 此代码片段展示了怎样构建一个生成器表达式作为自定义游标的替代方案,该游标可用于逐步检索网页上的所有超链接地址。 #### 数据处理流程概述 上述过程涉及到了从服务器接收响应后的三个核心阶段:首先是解析接收到的数据流为可读格式;其次是基于特定需求筛选有价值的信息片段;后则是将这些精选出来的资料妥善存档以便后续分析或呈现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值