反射原理:
设 点 A, B 都在横线 l 的同侧, 点 C 与点B关于横线 l 对称。 如果 A与C能够用折线连接, 则A与B也能够用折线连接,
并且连接A与B的折线中, 触到或穿过 l 的折线条数等于从 A 到 C 的折线条数。
证明:
由于 A, C 位于 l的两侧, 从A到C的折线必然穿过 l, 从第一个交点起,将折线的以后部分关于 l 进行反射, 必然得到从
A到B的折线,且此折线与l接触或相交,因而 A与B也能用折线连接; 反之, 如果A到B的折线若与l接触或相交, 经过如上
的反射, 必然得到从A到C 的折线,因而两者一一对应, 个数相等。
应用举例:
在一次选举中, A得到的选票数为 a, B得到的选票数为b, a > b。 现将选票排列后一张张统计, 试问有多少种排列, 在任一时刻
A 的选票数都比 B 的选票数多?
应用折线模型, 设A得票记为0(折线上升), B得票记为1,x 轴代表已统计的总票数, y轴为a领先b的票数, 则折线起点(0, 0), 终点 (a+b, a-b)
A 始终领先于 B的 折线必然经过 D(1,1)点,问题转化为求从 (1,1) 到 (a+b, a-b)满足条件的折线条数。
根据前一篇文章中的折