组合数学-反射原理

反射原理在数学中指出,如果点A和C(点C与B关于横线l对称)能用折线连接,那么A和B也能,且A到B的折线接触或穿过l的次数等于A到C的。该原理被应用于选举问题中,通过折线模型计算在任何时刻A的选票数均大于B的排列数,最终得出特定的组合数公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反射原理:

        设 点 A, B 都在横线 l 的同侧, 点 C 与点B关于横线 l 对称。 如果 A与C能够用折线连接, 则A与B也能够用折线连接,

         并且连接A与B的折线中, 触到或穿过 l 的折线条数等于从 A 到 C 的折线条数。


证明:

        由于 A, C 位于 l的两侧,  从A到C的折线必然穿过 l,   从第一个交点起,将折线的以后部分关于 l 进行反射, 必然得到从 

        A到B的折线,且此折线与l接触或相交,因而 A与B也能用折线连接; 反之, 如果A到B的折线若与l接触或相交, 经过如上

       的反射, 必然得到从A到C 的折线,因而两者一一对应, 个数相等。


应用举例:

在一次选举中, A得到的选票数为 a,    B得到的选票数为b,   a > b。  现将选票排列后一张张统计, 试问有多少种排列, 在任一时刻

A 的选票数都比 B 的选票数多?


应用折线模型, 设A得票记为0(折线上升), B得票记为1,x 轴代表已统计的总票数, y轴为a领先b的票数, 则折线起点(0, 0),    终点 (a+b,  a-b)

A 始终领先于 B的 折线必然经过 D(1,1)点,问题转化为求从 (1,1) 到 (a+b, a-b)满足条件的折线条数。

根据前一篇文章中的折

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值