如何使用 Selenium 抓取带分页的网页数据并保存到 CSV 文件

在进行网页数据抓取时,分页是一个常见的挑战。很多网站将数据分布在多个页面上,因此,我们需要通过分页按钮来逐页获取数据。今天,我们将分享如何使用 Selenium 抓取分页数据,并将抓取结果保存到 CSV 文件。

本文将通过一个实际的例子来展示如何抓取大学排名网站的数据,数据包含排名、大学名称、省份和得分,并将其保存在本地的 CSV 文件中。

1. 项目背景

我们将使用上海排名网的大学排名数据作为抓取目标。这些数据分布在多个页面上,我们需要:

  • 抓取多个页面的数据;

  • 模拟点击“下一页”按钮来获取每一页的数据;

  • 将抓取的数据保存为 CSV 格式。

2. 准备工作

首先,我们需要安装一些依赖库:

  • Selenium:用于自动化浏览器操作。

  • webdriver_manager:自动管理 WebDriver 的安装。

  • pandas:用于处理抓取到的数据并保存为 CSV 文件。

你可以使用以下命令安装这些库:

pip install selenium webdriver-manager pandas
3. 编写代码

以下是完整的代码,它可以抓取上海排名网(网站链接)上的大学排名数据,并将其保存为 CSV 文件。

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.chrome.options import Options
import pandas as pd
import time

def get_university_rankings(pages=5):
    chrome_options = Options()
    chrome_options.add_argument('--headless')  # 启动无头浏览器
    chrome_options.add_argument('--disable-gpu')
    chrome_options.add_argument('--no-sandbox')

    # 启动浏览器
    driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=chrome_options)
    
    url = "https://www.shanghairanking.com/rankings/bcur/2025"
    driver.get(url)
    time.sleep(3)  # 等待页面加载

    all_data = []

    for page in range(1, pages + 1):
        print(f"抓取第 {page} 页")

        time.sleep(2)  # 等待页面稳定

        # 获取每一页的数据
        rows = driver.find_elements(By.CSS_SELECTOR, "table tbody tr")
        for row in rows:
            cols = row.find_elements(By.TAG_NAME, "td")
            cols_text = [col.text.strip() for col in cols]
            if len(cols_text) >= 4:
                all_data.append(cols_text[:4])  # 只保存前四列(排名、大学名、省份、得分)

        # 判断是否可以继续抓取下一页
        try:
            next_btn = driver.find_element(By.CSS_SELECTOR, 'li.ant-pagination-next a')
            if 'ant-pagination-disabled' in next_btn.get_attribute('class'):
                print("已是最后一页,停止抓取")
                break
            else:
                next_btn.click()  # 点击“下一页”按钮
                time.sleep(3)  # 等待下一页加载
        except NoSuchElementException:
            print("找不到分页按钮,停止抓取")
            break

    driver.quit()

    if not all_data:
        print("❌ 没抓到数据")
        return

    # 转换为 DataFrame
    df = pd.DataFrame(all_data, columns=["Rank", "University", "Province", "Score"])

    # 保存为 CSV 文件
    df.to_csv("E:/university_ranking.csv", index=False, encoding="utf-8-sig")
    print("✅ 抓取完成,保存到 E:/university_ranking.csv")
4. 常见问题与解决方法
  • 页面加载过慢:如果页面加载较慢,可以调整 time.sleep() 的等待时间,确保每一页的内容加载完成后再进行抓取。

  • 找不到“下一页”按钮:如果网页的分页按钮结构发生了变化,可能导致选择器失效。你可以通过检查网页源代码来确定正确的 CSS 选择器。

  • 抓取不完整的数据:如果页面结构发生变化或网络问题,可能导致抓取的数据不完整。可以尝试在代码中加入更多的错误处理机制,确保每个步骤都能顺利执行。

5. 总结

通过 SeleniumPython,我们可以轻松地处理带分页的网页数据抓取问题。关键步骤包括:

  • 使用 find_elements 获取每一页的表格数据。

  • 模拟点击“下一页”按钮,抓取多页数据。

  • 将数据保存为 CSV 文件,方便后续分析。

如果你对爬虫、数据抓取或自动化测试有兴趣,这篇博客提供了一个很好的入门示例。希望你能顺利抓取到你需要的数据,祝你编程愉快!求关注、点赞、收藏OVO。

参考资源链接:[Python招聘网站数据爬虫源码及使用指南](https://wenku.csdn.net/doc/2uqxm4xb6y?utm_source=wenku_answer2doc_content) 要编写一个Python爬虫程序来抓取特定岗位薪资数据存储为CSV格式,首先需要掌握Python基础以及网络爬虫相关知识。推荐参考《Python招聘网站数据爬虫源码及使用指南》这一资料,它将为你提供完整的源码和详细的注释,帮助你快速上手。 在编写爬虫之前,你需要确定目标网站的结构和数据抓取的合法性。使用requests库来发送HTTP请求获取网页内容,然后利用BeautifulSoup库解析HTML,提取出包含薪资信息的元素。你还需要了解如何使用csv模块将提取到的数据写入CSV文件。 例如,假设我们想要抓取'软件工程师'这一岗位的薪资数据,我们可以编写如下的代码逻辑: ```python import requests from bs4 import BeautifulSoup import csv # 定义目标URL和请求头 url = '***' headers = {'User-Agent': 'Mozilla/5.0'} # 发送HTTP GET请求 response = requests.get(url, headers=headers) response.raise_for_status() # 检查请求是否成功 # 解析网页内容 soup = BeautifulSoup(response.text, 'html.parser') # 定位薪资信息的标签和属性 salary_tags = soup.find_all('div', class_='salary-info') # 准备CSV文件头部 fieldnames = ['职位', '薪资'] with open('job_salaries.csv', 'w', newline='', encoding='utf-8') as csv*** *** *** * 遍历提取数据 for tag in salary_tags: position = tag.find('span', class_='job-position').text.strip() salary = tag.find('span', class_='job-salary').text.strip() writer.writerow({'职位': position, '薪资': salary}) ``` 在这个例子中,我们首先发送一个有用户代理的HTTP GET请求到目标网站,然后使用BeautifulSoup解析返回的HTML内容,寻找包含薪资信息的标签。最后,我们将提取到的职位和薪资信息写入CSV文件中。 当你熟悉了上述过程后,可以进一步参考《Python招聘网站数据爬虫源码及使用指南》中的详细注释源码,学习如何构建更复杂的数据爬虫,比如处理分页、动态加载的内容、异常处理以及遵守网站的robots.txt规则等高级话题。 完成上述任务后,你不仅能够掌握Python网络爬虫的基本技术,还能通过实践提升对实际问题的解决能力。如果你对爬虫技术有更深入的兴趣,可以继续探索数据抓取的高级技术,例如使用Selenium进行模拟浏览器操作,或者学习如何使用Scrapy框架搭建完整的爬虫应用。 参考资源链接:[Python招聘网站数据爬虫源码及使用指南](https://wenku.csdn.net/doc/2uqxm4xb6y?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值