所有排列中的最大和

有一个整数数组 nums ,和一个查询数组 querys ,其中 querys[i] = [start\tiny i, end\tiny i] 。第 i 个查询求 nums[start\tiny i] + nums[start\tiny i + 1] + ... + nums[end\tiny i - 1] + nums[end\tiny i] 的结果 ,start\tiny i 和 end\tiny i 数组索引都是 从 0 开始 的。
可以任意排列 nums 中的数字,请返回所有查询结果之和的最大值。
由于答案可能会很大,请你将它对 10^{9} + 7 取余 后返回。

示例 1:
输入:nums = [1,2,3,4,5], querys = [[1,3],[0,1]]
输出:19
解释:一个可行的 nums 排列为 [2,1,3,4,5],并有如下结果:
querys[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8
querys[1] -> nums[0] + nums[1] = 2 + 1 = 3
总和为:8 + 3 = 11。
一个总和更大的排列为 [3,5,4,2,1],并有如下结果:
querys[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11
querys[1] -> nums[0] + nums[1] = 3 + 5  = 8
总和为: 11 + 8 = 19,这个方案是所有排列中查询之和最大的结果。

示例 2:
输入:nums = [1,2,3,4,5,6], querys = [[0,1]]
输出:11
解释:一个总和最大的排列为 [6,5,4,3,2,1] ,查询和为 [11]。

示例 3:
输入:nums = [1,2,3,4,5,10], querys = [[0,2],[1,3],[1,1]]
输出:47
解释:一个和最大的排列为 [4,10,5,3,2,1] ,查询结果分别为 [19,18,10]。

提示:
    n == nums.length
    1 <= n <= 10^{5}
    0 <= nums[i] <= 10^{5}
    1 <= querys.length <= 10^{5}
    querys[i].length == 2
    0 <= start\tiny i <= end\tiny i < n

 

package com.loo;

import java.util.Arrays;

public class MaxSumRangeQuery {

    public static final int MODULO = 1000000007;

    public static void main(String[] args) {
        int[] nums = {1 , 2 , 3 , 4 , 5};
        int[][] querys = {{1 , 3} , {0 , 1}};
        int[] nums2 = {1 , 2 , 3 , 4 , 5 , 6};
        int[][] querys2 = {{0 , 1}};
        int[] nums3 = {1 , 2 , 3 , 4 , 5 , 10};
        int[][] querys3 = {{0 , 2} , {1 , 3} , {1 , 1}};
        System.out.println(getMaxSumRangeQueryValue(nums3 , querys3));
    }

    public static int getMaxSumRangeQueryValue(int[] nums , int[][] querys) {
        if (nums == null || nums.length == 0 || querys == null || querys.length == 0) {
            return 0;
        }
        int length = nums.length;
        int[] counts = new int[length];
        for (int[] query : querys) {
            int start = query[0];
            int end = query[1];
            counts[start]++;
            if (end + 1 < length) {
                counts[end + 1]--;
            }
        }
        for (int i=1;i<length;i++) {
            counts[i] += counts[i-1];
        }
        Arrays.sort(nums);
        Arrays.sort(counts);
        long sum = 0;
        for (int i=length-1;i>=0&&counts[i]>0;i--) {
            sum += (long) nums[i] * counts[i];
        }
        return (int)(sum % MODULO);
    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值