有一个整数数组 nums ,和一个查询数组 querys ,其中 querys[i] = [start, end] 。第 i 个查询求 nums[start] + nums[start + 1] + ... + nums[end - 1] + nums[end] 的结果 ,start 和 end 数组索引都是 从 0 开始 的。
可以任意排列 nums 中的数字,请返回所有查询结果之和的最大值。
由于答案可能会很大,请你将它对 + 7 取余 后返回。
示例 1:
输入:nums = [1,2,3,4,5], querys = [[1,3],[0,1]]
输出:19
解释:一个可行的 nums 排列为 [2,1,3,4,5],并有如下结果:
querys[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8
querys[1] -> nums[0] + nums[1] = 2 + 1 = 3
总和为:8 + 3 = 11。
一个总和更大的排列为 [3,5,4,2,1],并有如下结果:
querys[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11
querys[1] -> nums[0] + nums[1] = 3 + 5 = 8
总和为: 11 + 8 = 19,这个方案是所有排列中查询之和最大的结果。
示例 2:
输入:nums = [1,2,3,4,5,6], querys = [[0,1]]
输出:11
解释:一个总和最大的排列为 [6,5,4,3,2,1] ,查询和为 [11]。
示例 3:
输入:nums = [1,2,3,4,5,10], querys = [[0,2],[1,3],[1,1]]
输出:47
解释:一个和最大的排列为 [4,10,5,3,2,1] ,查询结果分别为 [19,18,10]。
提示:
n == nums.length
1 <= n <=
0 <= nums[i] <=
1 <= querys.length <=
querys[i].length == 2
0 <= start <= end < n
package com.loo;
import java.util.Arrays;
public class MaxSumRangeQuery {
public static final int MODULO = 1000000007;
public static void main(String[] args) {
int[] nums = {1 , 2 , 3 , 4 , 5};
int[][] querys = {{1 , 3} , {0 , 1}};
int[] nums2 = {1 , 2 , 3 , 4 , 5 , 6};
int[][] querys2 = {{0 , 1}};
int[] nums3 = {1 , 2 , 3 , 4 , 5 , 10};
int[][] querys3 = {{0 , 2} , {1 , 3} , {1 , 1}};
System.out.println(getMaxSumRangeQueryValue(nums3 , querys3));
}
public static int getMaxSumRangeQueryValue(int[] nums , int[][] querys) {
if (nums == null || nums.length == 0 || querys == null || querys.length == 0) {
return 0;
}
int length = nums.length;
int[] counts = new int[length];
for (int[] query : querys) {
int start = query[0];
int end = query[1];
counts[start]++;
if (end + 1 < length) {
counts[end + 1]--;
}
}
for (int i=1;i<length;i++) {
counts[i] += counts[i-1];
}
Arrays.sort(nums);
Arrays.sort(counts);
long sum = 0;
for (int i=length-1;i>=0&&counts[i]>0;i--) {
sum += (long) nums[i] * counts[i];
}
return (int)(sum % MODULO);
}
}