题意:
有一个整数数组 nums
,和一个查询数组 requests
,其中 requests[i] = [starti, endi]
。第 i
个查询求 nums[starti] + nums[starti + 1] + ... + nums[endi - 1] + nums[endi]
的结果 ,starti
和 endi
数组索引都是 从 0 开始 的。
你可以任意排列 nums
中的数字,请你返回所有查询结果之和的最大值。
由于答案可能会很大,请你将它对 109 + 7
取余 后返回。
示例 1:
输入:nums = [1,2,3,4,5], requests = [[1,3],[0,1]] 输出:19 解释:一个可行的 nums 排列为 [2,1,3,4,5],并有如下结果: requests[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8 requests[1] -> nums[0] + nums[1] = 2 + 1 = 3 总和为:8 + 3 = 11。 一个总和更大的排列为 [3,5,4,2,1],并有如下结果: requests[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11 requests[1] -> nums[0] + nums[1] = 3 + 5 = 8 总和为: 11 + 8 = 19,这个方案是所有排列中查询之和最大的结果。
提示:
n == nums.length
1 <= n <= 10^5
0 <= nums[i] <= 10^5
1 <= requests.length <= 10^5
requests[i].length == 2
0 <= start[i] <= end[i] < n
解题思路:
由于数据量大,所以不能够暴力给某个数加,需要优化
区间左边++, 区间右边--
这样前缀和就是当前的数字出现的次数
const int maxn = 1e5+5;
const int mod = 1e9+7;
class Solution {
public:
long long cnt[maxn];
int maxSumRangeQuery(vector<int>& nums, vector<vector<int>>& requests) {
memset(cnt, 0, sizeof(cnt));
sort(nums.begin(), nums.end());
int n = nums.size();
int r = requests.size();
for(int i = 0; i < r; i++) {
cnt[requests[i][0]]++; // 左区间++
cnt[requests[i][1]+1]--; // 右区间--
}
for(int i = 1; i < n; i++) {
cnt[i] += cnt[i-1];
}
sort(cnt, cnt+n);
long long ans = 0;
for(int i = 0; i < n; i++) {
ans = (ans + cnt[i] * nums[i]) % mod;
}
return ans;
}
};