朴素O(n^2)
建立一个数组res[Maxn], res[ i ]用来记录以i位置为结尾的最长的子序列,那么我们要求res这个数组里的最大值(注意不是res[ n ] ),所以当我们在求res[ i ] 时,需要从0到i-1扫一遍,看看通过哪个点“松弛” (因为这个算法好像迪科斯彻最短路,所以借用这个名词来解释一下),这样代码如下
#include<iostream>
#include<algorithm>
using namespace std;
const int MAX=1001;
int a[MAX];
int res[MAX];
int main()
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
int maxm=0;
for(int i=0;i<x;i++)
{
res[i]=1;
for(int j=0;j<i;j++)
if(a[j]<a[i]&&res[j]+1>res[i])
res[i]=res[j]+1;
maxm=max(maxm,res[i]);
}
cout<<maxm;
}
二分优化O(nlogn)
那么,有没有更快的方法呢?当然有。这回要用到二分。
我们回想一下,在上面 O(n2) 的程序中,哪些地方看起来比较费时?
没错,就是内层用于更新i的循环。因为每一次他都要查找一遍,效率并不高。
回到题目,我们发现,他只要我们求长度,所以我们可以模拟一个单调栈(曾经很多参考书说这是一个栈。实际上不是严格的栈,而是一个后进入的加在末尾,然后每次可以替换掉其中元素的序列。这个序列是单调递增的,保证结果就是所求的LIS)。
所以每遇到一个比栈顶元素大的数,就放进栈里,遇到比栈顶元素小的就二分查找前边的元素,找到一个“最应该被换掉的元素”,用新数去更新前边的元素。这个元素可能不是最优解的一部分,但是它可以使得后面还未加入的、比较小的数更有可能进入这个队列。通俗地来说,作为门槛,他本来要大于当前序列的最后一个数才能加进去;就是如果我太大了,我就乖乖呆在末尾;如果前面有一个数比我大,也就是我比你好,既然我在你后面也就是我们两者只能选其一,那我只好把你替换掉了。虽然我这临时临头换的不一定最合适,但是对于后面还有很多的人等着排进来的情况下,我给他们创造了更多机会,使得这个序列的最后一个数有可能变小,让更多的人进来。
这个算法不难证明也是正确的。因为前面每一次的枚举都换成了二分,内层的复杂度从n降到了log2,外层不变。所以总的复杂度是O(nlog2n)。
#include<iostream>
#include<algorithm>
using namespace std;
int v[200001];
int res[200001];
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
scanf("%d",&v[i]);
int len=1;
res[1]=v[1];
for(int i=2;i<=n;i++)
{
if(res[len]<v[i])
res[++len]=v[i];
else
{
int j=lower_bound(res+1,res+len+1,v[i])-res;
res[j]=v[i];
}
}
cout<<len<<endl;
}