- cvpr 2019
I. Introduction
- 本文贡献:
- 算法:
- 一个基于U-Net的 DME (密度图估计,density map estimation) 模型。
- 该模型采用了完全相同的encoder-decoder流水线结构,外加一个强化分支。其中的enc模块用VGG16bn[9]替换。(通过对VGG16bn、resnet50[10]和一个基于Inception[11]的特征提取器进行实验比较,发现vgg16bn是最好的支撑结构)。
- 一个独立的 解码强化分支 (Decoding Reinforcement branch) 用于训练,从而加快网络收敛,提升估计的密度图 (density map) 的 SSIM (Structural Similarity Index,结构相似度指数),也就是确保密度图的局部相关性;
- 由此关注人群计数问题中的尺度变化问题,同时通过强化分支来降低背景噪声,从而保留结构相似度、提升收敛性。
- 结合DME和强化分支的优点,提出联合损失函数:BCE (Binary Cross entropy loss) 和 MSE (Mean Squared error loss),从而得到一个end-to-end的计数网络。
- 一个基于U-Net的 DME (密度图估计,density map estimation) 模型。
- 分析:
- 分析当代网络架构的缺点,得出经验性的结论:本文网络的性能提升主要受益于其中的 encoder-decoder 流水线结构。
- 通过一系列的误差分析得出结论:当前的工作已然饱和,并提出一个待解决的问题:
- 算法: