nb_200930_2019_wnet

W-Net: Reinforced U-Net for Density Map Estimation

  • cvpr 2019

I. Introduction

  • 本文贡献:
    • 算法:
      1. 一个基于U-Net的 DME (密度图估计,density map estimation) 模型。
        • 该模型采用了完全相同的encoder-decoder流水线结构,外加一个强化分支。其中的enc模块用VGG16bn[9]替换。(通过对VGG16bn、resnet50[10]和一个基于Inception[11]的特征提取器进行实验比较,发现vgg16bn是最好的支撑结构)
      2. 一个独立的 解码强化分支 (Decoding Reinforcement branch) 用于训练,从而加快网络收敛,提升估计的密度图 (density map)SSIM (Structural Similarity Index,结构相似度指数),也就是确保密度图的局部相关性;
      • 由此关注人群计数问题中的尺度变化问题,同时通过强化分支来降低背景噪声,从而保留结构相似度、提升收敛性。
      • 结合DME和强化分支的优点,提出联合损失函数:BCE (Binary Cross entropy loss)MSE (Mean Squared error loss),从而得到一个end-to-end的计数网络。
    • 分析:
      1. 分析当代网络架构的缺点,得出经验性的结论:本文网络的性能提升主要受益于其中的 encoder-decoder 流水线结构。
      2. 通过一系列的误差分析得出结论:当前的工作已然饱和,并提出一个待解决的问题:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值