nb_200926_2020_cvpr_PCNet

本文提出PCNet,一个无监督的深度学习框架,用于场景去遮挡。通过Partial Completion Network逐步恢复物体遮罩和内容,无需人工标注遮挡顺序和边界。PCNet包含两个子网络,PCNet-M恢复遮挡遮罩,PCNet-C填充RGB内容,实现遮挡顺序恢复、非模态补全和内容补全。
摘要由CSDN通过智能技术生成

Self-Supervised Scene De-occlusion
中文作者自述

  • cvpr2020

I. Abstract

  • Scene de-occlusion
    • 目标
      • 分解图像:将图中物体提取出来成为独立的完整物体实体——判断遮挡顺序,补齐遮挡部分。
      • 重组图像:重新组合提取到的物体,生成新的图像。
    • 相关概念:
      • 模态感知 (modal perception):解析直接可见区域
      • 非模态感知 (amodal perception):感知物体的完整结构,包括不可见部分。
      • 常见的Dl应用如目标检测、图像分割等,主要关注与模态感知。
    • 应用场景
      • 高质量可控图像篡改,场景重构、对监督算法任务的样本自动标注(将模态遮罩标注变为非模态的)。
    • 自然场景理解 (natural scene understanding)</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值