Python pandas中 如何声明(创建)一个空的DataFrame对象(变量),如何快速的创建一个DataFrame变量?

Python pandas中 如何声明一个空的DataFrame对象(变量),如何快速的创建一个DataFrame变量?如何添加、创建一个新列?

有些时候,我们需简单地创建一个DataFrame变量,具体的列可以后续程时候,再创建。或者创建一个简单的dataframe对象进行测试用。

1.如何创建一个DataFrame变量

import pandas as pd
df = pd.DataFrame()

这样就创建了一个df变量,不包含任何索引和列。

2.快速简单的创建一个DataFrame变量做测试

import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(16).reshape(4,4))

创建了一个4X4的dataframe变量,可以用来练习操作,内容如下:

3.如何给DataFrame对象添加一列

例如给上文的df对象添加一列'ma',并设为值666。

df['ma'] = 666
df

这样就给df对象添加了新的一列ma,值为666。当然也可以将这一列置为空值df['ma']=np.nan。

 

就这样了,欢迎关注、点赞、交流、一起学习,~

### 使用 Pandas 创建 DataFrame 并添加数据 #### 创建 DataFrame 的基本方式 为了创建一个新的 `DataFrame`,可以利用多种不同的输入形式来初始化这个对象。最常用的方式之一是通过字典结构的数据作为输入[^3]。 ```python import pandas as pd # 利用字典构建 DataFrame data_dict = {'Column1': ['A', 'B', 'C'], 'Column2': [1, 2, 3]} df = pd.DataFrame(data=data_dict) print(df) ``` 此段代码展示了如何基于一个由列表组成的字典来建立 `DataFrame` 对象。这里定义了一个名为 `data_dict` 的变量存储列名及其对应的值集合;随后调用了 `pd.DataFrame()` 函数,并将该字典传递给它以形成表格式的结构化数据集。 #### 向现有 DataFrame 中追加单行记录 当需要向已经存在的 `DataFrame` 添加新条目时,可以通过构造包含新增项信息的新字典并与原表连接实现这一目的。下面的例子说明了具体做法: ```python new_row = {'Column1': 'D', 'Column2': 4} # 将新行转换成 DataFrame 形式以便于后续操作 temp_df = pd.DataFrame([new_row]) # 追加新行至原有 DataFrame result_df = pd.concat([df, temp_df], ignore_index=True) print(result_df) ``` 上述过程首先准备了一条待加入的新纪录 `new_row`,接着将其转化为临时的 `DataFrame` 实例 `temp_df` 方便执行拼接动作。最后借助 `pd.concat()` 方法把两个 `DataFrame` 结合起来得到最终的结果 `result_df`,同时设置参数 `ignore_index=True` 来重新编排索引序号[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值