实验
文章平均质量分 93
Losteng
这个作者很懒,什么都没留下…
展开
-
图像镜像
图像的几何变换是在不改变图像内容的前提下对图像像素的进行空间几何变换,主要包括了图像的平移变换、镜像变换、缩放和旋转等。本文首先介绍了图像几何变换的一些基本概念,然后再OpenCV2下实现了图像的平移变换、镜像变换、缩放以及旋转,最后介绍几何的组合变换(平移+缩放+旋转)。1.几何变换的基本概念1.1 坐标映射关系图像的几何变换改变了像素的空间位置,建立一种原图像像素与变换转载 2016-03-14 22:16:04 · 7937 阅读 · 0 评论 -
MySQL的数据文件的整理
今天遇到MySQL的原始的数据文件.frm,.myd,myi导入的问题。下面就来简单地介绍一下。.frm .myd .myi都是Mysql存储数据的文件, 代表MySQL数据库表的结构/数据和索引文件 ,我们默认创建数据库和表时只生成数据库表结构的文件.frm. 移植数据库时,必须存在三种格式的数据库表文件,才能正常使用该DB。打开mysql的data目录,可能还会遇见另一种文原创 2016-07-21 19:02:01 · 966 阅读 · 0 评论 -
使用pycaffe进行的fine-tuning的过程
最近在进行caffe的fine-tuning的实验,在此做个简单地介绍和总结,方便以后的查询。pre-trainning 与 fine-tuning 简单介绍在使用大型网络的时候,经常是自己的数据集有限,为此常常会使用现已成熟的网络结构,如:alexnet,Googlenet,vggnet等,可以使用之前在开源社区中已经有人训练好的参数文件(.caffemodel),进行网络的初始化,然后原创 2016-06-22 09:22:21 · 3264 阅读 · 2 评论 -
hadoop环境搭建hbase的一些问题
最近在学习hadoop的相关的工具,首先从环境入手,发现一些在搭建过程中遇到的一些问题,现在总结一下。1,hadoop的hdfs的问题,主要是进行多次格式化造成的dfs的data,中的version与dfs的name中的version的clusterID不一致,造成datanode或者namenode启动异常。这种问题的解决方法主要是可以将clusterID复制到对应的节点的v原创 2016-06-30 15:33:56 · 814 阅读 · 0 评论 -
caffe 中的卷积的计算过程
最近在做实验是,发现看代码可以增加自己的认识,就最近对卷积的操作的总结方便今后的查阅,在卷积神经网络中,卷积算是一个必不可少的操作,下图是一个简单的各层的关系。可以看出一个很好的扩展的关系,下面是整个卷积的大概的过程图中上半部分是传统的卷积的操作,下图是一个矩阵的相乘的操作。下图是在一个卷积层中将卷积操作展开的具体操作过程,他里面按照卷积核的大小取数据然后展原创 2016-05-29 13:30:34 · 7718 阅读 · 0 评论 -
caffe的mnist里的运行自编码的问题
今天在运行caffe中自编码的例子出现了这种光标闪动就是无法执行的情况。很是奇怪就在网上查找最后在caffe的git上找到了解答https://github.com/BVLC/caffe/issues/3037解释一下大概就是在运行layer { name: "data" type: "Data" top: "data" include原创 2016-04-16 20:35:59 · 1997 阅读 · 1 评论 -
使用python将自己的图片数据集准换成为cnn的数据集
在使用theano的cnn时,今天介绍一下关于如何将自己的数据集转换成像cnn的默认数据集mnist的形式在此本人遇到了一些坑,在此进行总结一下,声明在此使用的彩色图转灰度图进行的单通道的图像存储,对于多通道的图像随后进行总结主要流程是将图像数据读出将图像转换成numpy的数组形式将图像进行行的处理编程行向量的存储之后是将数据与标签进行合并存储存储在一个list中将原创 2016-04-29 13:47:05 · 16351 阅读 · 9 评论 -
HOG特征
最近在看行人检测,对于HOG进行查询,看到不错,转载一下方向梯度直方图(Histogram of Oriented Gradient,HOG)1、HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构转载 2016-03-21 16:49:45 · 4010 阅读 · 0 评论 -
将图片转换成caffe的lmdb形式并进行实验
最近做实验需要用到caffe,做一下总结以备以后操作参考 实验是使用自己从网上爬的数据集来替换caffe中demo中的数据集 首先介绍一下数据的格式 Caffe生成的数据分为2种格式:Lmdb和Leveldb它们都是键/值对(Key/Value Pair)嵌入式数据库管理系统编程库。 虽然lmdb的内存消耗是leveldb的1.1倍,但是lmdb的速度比leveldb快10%至15%,更重要原创 2016-03-04 09:51:47 · 4704 阅读 · 5 评论 -
import caffe 出错的问题
在命令行输入python;再输入import caffe时,可能会报以下错误:can not find module skimage.io此时只要按照以下命令操作即可:$ sudo apt-get install python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5转载 2016-03-05 17:12:57 · 22533 阅读 · 3 评论 -
SIFT中的尺度空间和传统图像金字塔
SIFT解析(一)建立高斯金字塔SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)在目标识别、图像配准领域具有广泛的应用,下面按照SIFT特征的算法流程对其进行简要介绍对SIFT特征做简要介绍。高斯金字塔是SIFT特征提取的第一步,之后特征空间中极值点的确定,都是基于高斯金字塔,因此SIFT特征学习的第一步是如何建立的高斯金转载 2016-03-06 20:55:51 · 9668 阅读 · 4 评论 -
贾扬清分享_深度学习框架caffe
Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作。本文是根据机器学习研究会组织的online分享的交流内容,简单的整理了一下。###目录###1、caffe分享 我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyv转载 2016-03-07 17:06:59 · 3550 阅读 · 0 评论 -
Caffe中配置每一个层的结构
最近在学习caffe做实验 今天就记录一下layer的参数及这些常用的参数的解释吧主要还是参考官方网站http://caffe.berkeleyvision.org/tutorial/layers.html下面就介绍一下常用的layer的配置转载 2016-03-07 20:21:34 · 1055 阅读 · 1 评论 -
caffe 的layer的参数说明
最近在学习caffe做实验 今天就记录一下layer的参数及这些常用的参数的解释吧主要还是参考官方网站 http://caffe.berkeleyvision.org/tutorial/layers.html下面就介绍一下常用的layer的配置 以caffe中根目录下的models 中caffenet 其中主要有三个文件 deploy.prototxt solver.protot原创 2016-03-08 15:31:38 · 11673 阅读 · 1 评论 -
Caffe中的优化方法
在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。Caffe通过协调的进行整个网络的前向传播推倒以及后向梯度对参数进行更新,试图减小损失。Caffe已经封装好了三种优化方法,分别是Stochastic Gradient Descent (SGD), AdaptiveGradient (ADAGRAD), and Nesterov’s Ac转载 2016-03-10 20:44:12 · 617 阅读 · 0 评论 -
mxnet的更新问题
最近关于caffe 和mxnet 都是在GitHub上的开源项目。经常会出现需要更新版本到本地,使用下面的命令来git最新的文件到本地重新编译git pull && git submodule update && make clean && make原创 2017-04-03 21:42:39 · 2535 阅读 · 0 评论