1. DataFrame
1.1 Dataframe 显示所有行、列信息
#显示所有列
pd.set_option('display.max_columns', None)
#显示所有行
pd.set_option('display.max_rows', None)
#设置value的显示长度为100,默认为50
pd.set_option('max_colwidth',100)
1.2. Dataframe 根据某一列排序
df.sort_values(by="sales" , ascending=False) # by 指定列 ascending
1.3. Dataframe取消科学计数法显示
pd.set_option('float_format', lambda x: '%.3f' % x)
1.4. DF某列转成日期格式
ipos['Date'] = pd.to_datetime(ipos['Date'])
1.5. concat()、merge()、join() 用法
结论:
concat与append是属于拼接操作
concat简略形式,只能在axis=0上进行合并
merge与join属于关联操作,类似于sql中的join操作
merge可以实现列与索引上关联操作,join只能索引上关联操作
关联操作基本上用merge就可以了
1)两个列根据相同的索引进行merge:
df_num1.merge(df_num2, how='left', left_index=True, right_index=True,
suffixes=('_x', '_y'))
1.6 DataFrame数据重排
from sklearn.utils import shuffle
df = shuffle(df)
1.7 DataFrame修改列名
# 修改列名a,b为A、B。
df.columns = ['A','B']
# 只修改列名a为A
df.rename(columns={'a':'A'})
1.8 直接在原来dataframe上 修改个别cell的值。
例如将df_all中 duration=0的 替换成duration=1,
df_all.loc[df_all.duration == 0, 'duration'] = 1
2. MySQL
2.1. 修改库、表、字段的字符集
alter database <数据库名> character set utf8mb4;
例:alter database db_user character set utf8mb4;
alter table <表名> character set utf8mb4;
例:alter table user character set utf8mb4;
ALTER TABLE <表名> MODIFY COLUMN <字段名> <字段类型> CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
例:ALTER TABLE comment MODIFY COLUMN content VARCHAR(512) CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
3. Jupyter Nobetook
3.1. 添加双内核
在原有python2基础上,添加python3内核
安装:直接命令行输入如下命令
ipython kernel install --name python3
查看jupyter当前都有哪些内核:
jupyter kernelspec list
4. 模型
4.1. 逻辑回归
对于分类型的特征,特征系数上的正符号告诉我们当这个特征存在时,相对于基线而
言它增加了正向结果的概率。对于连续性的特征,正号表示该特征值的增加,会导致正向
结果的概率增加。系数的大小告诉我们概率增加的幅度